Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020885

Meeting #20, Miami/ FL, USA, 23 – 27 September 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correction of status of methods to interfaces in clause 8.3

	
	

	Source:
(

	ETSI STF211 (Peter Schmitting)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	27/09/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	There is no requirement in the standard about the necessity to implement all or only some of the methods defined for an interface.

	
	

	Summary of change:
(

	Clarify which methods are mandatory and which are optional.

	
	

	Consequences if
(

not approved:
	Application developers will not know which methods will actually be available.

	
	

	Clauses affected:
(

	8.3 Interface Classes

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3 Interface Classes

8.3.1 Event Notification Interface Classes
8.3.1.1 Interface Class IpFwEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the service of generic events that have occurred.
If Event Notifications are supported by a Framework, this interface and all its methods shall be supported.
	<<Interface>>

IpFwEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.1.1.1 Method createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_EVENT_TYPE,P_INVALID_CRITERIA
8.3.1.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID
8.3.1.2 Interface Class IpSvcEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event. The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained.
If Event Notifications are supported by a Service, this interface and all its methods shall be supported.
	<<Interface>>

IpSvcEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8.3.1.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service can use the assignment id to associate events with event specific criteria and to act accordingly.
Raises

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID
8.3.1.2.2 Method notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2 Integrity Management Interface Classes
8.3.2.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.
If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and genFaultStatsRecordErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatsRecordReq(), it shall implement generateFaultStatsRecordRes() and generateFaultStatsRecordErr() in this interface.
	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

8.3.2.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).
Raises

TpCommonExceptions
8.3.2.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID
8.3.2.1.3 Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On receipt of this indication, the framework must act to inform the client application.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.1.4 Method genFaultStatsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.2.1.5 Method svcUnavailableInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The framework should inform the client application that is currently using this service instance that it is unavailable for use (via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service instance's unavailability.
Raises

TpCommonExceptions
8.3.2.1.6 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.2.1.7 Method <<deprecated>> genFaultStatsRecordRes()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordRes().

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the services that are included in the general fault statistics record. The serviceIDs parameter is not allowed to be an empty list.
Raises

TpCommonExceptions
8.3.2.1.8 Method <<deprecated>> genFaultStatsRecordErr()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordErr().

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
serviceIDs : in TpServiceIDList

Specifies the services that were included in the general fault statistics record request. The serviceIDs parameter is not allowed to be an empty list.
Raises

TpCommonExceptions
8.3.2.1.9 Method <<new>> generateFaultStatsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.2.1.10 Method <<new>> generateFaultStatsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
8.3.2.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface
If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented. If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking IpFwFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and genFaultStatsRecordErr() in this interface.
	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

8.3.2.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID
8.3.2.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.2.2.3 Method fwFaultReportInd()

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.2.2.4 Method fwFaultRecoveryInd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.2.2.5 Method fwUnavailableInd()

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
Raises

TpCommonExceptions
8.3.2.2.6 Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.2.7 Method appUnavailableInd()

The framework invokes this method to inform the service instance that the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.2.8 Method genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.2.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.2.2.10 Method genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.2.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface. If the framework does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
serviceIDs : in TpServiceIDList

Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
8.3.2.2.12 Method <<new>> generateFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.2.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.
If the IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.
	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.2.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions,P_INVALID_INTERFACE_TYPE
8.3.2.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.3.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.2.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.
 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat.
If a Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the pulse() method.
	<<Interface>>

IpFwHeartBeat

	

	pulse () : void

8.3.2.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework.
If the IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat() shall be implemented.
	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.2.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.
Raises

TpCommonExceptions,P_INVALID_INTERFACE_TYPE
8.3.2.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.5.3 Method changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.
Raises

TpCommonExceptions
8.3.2.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.
The service heartbeat interface is used by the framework to send the service instance its heartbeat.
If a Service is capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse() method.
	<<Interface>>

IpSvcHeartBeat

	

	pulse () : void

8.3.2.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.
If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpSvcLoadManager.querySvcLoadReq() method, then it shall implement querySvcLoadRes() and querySvcLoadErr() methods in this interface.
	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

8.3.2.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions
8.3.2.7.2 Method queryLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.2.7.3 Method querySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.2.7.4 Method querySvcLoadErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
8.3.2.7.5 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
8.3.2.7.6 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
8.3.2.7.7 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
8.3.2.7.8 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
8.3.2.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.
If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If a the Service is capable of invoking the IpFwLoadManager.queryLoadReq() method, then it shall implement queryLoadRes() and queryLoadErr() methods in this interface.
	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

8.3.2.8.1 Method querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.2.8.2 Method queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpCommonExceptions
8.3.2.8.3 Method queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
8.3.2.8.4 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
8.3.2.8.5 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.8.6 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.2.9 Interface Class IpFwOAM

Inherits from: IpInterface.
The OAM interface is used to query the system date and time. The service and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of this API.
This interface and its method are optional.
	<<Interface>>

IpFwOAM

	

	systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.2.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
8.3.2.10 Interface Class IpSvcOAM

Inherits from: IpInterface.
This interface and its method are optional.
	<<Interface>>

IpSvcOAM

	

	systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.2.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.
Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT
8.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" method returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values", by using the "discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has previously registered.

8.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.
This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods.

	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters

No Parameters were identified for this method

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions
8.3.3.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information about: the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples, the names of the super types of this service type, and whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.
Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
8.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values". The service supplier passes in a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the service supplier provided.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the properties of its supertypes.
desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.
max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.
Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY
8.3.3.1.4 Method listRegisteredServices()

Returns a list of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of registered services. Each service is characterised by its service ID and a list of service properties {name and value list} associated with the service.

Parameters

No Parameters were identified for this method

Returns

TpServiceList

Raises

TpCommonExceptions
8.3.4 Service Instance Lifecycle Manager Interface Classes
The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

8.3.4.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.
This interface and all its methods shall be implemented by a Service.
	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

8.3.4.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY
8.3.4.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.
Raises

TpCommonExceptions
8.3.5 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous clause enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

8.3.5.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and unannounceService() shall be implemented by a Framework.
	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

8.3.5.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
8.3.5.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, P_INVALID_INTERFACE_TYPE
8.3.5.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
8.3.5.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
8.3.5.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

