joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020729

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Source:
Lucent Technologies (Shehryar QUTUB)

Title:
Proposed Extensions from Lucent Technologies to the Parlay Policy Management Specification

Agenda Item:

Document for:
Discussion

Proposed Extensions from Lucent Technologies to the Parlay Policy Management Specification

Rick Hull, Bharat Kumar, Peter Patel-Schneider, Shehryar Qutub, Prasan Roy, Arnaud Sahuguet, Ming Xiong

7/3/2002

Abstract

This document describes some extensions that we feel are useful to the Parlay Policy Management Specification. These extensions are based on our past experience in building a rules engine that we successfully applied to different applications. The extensions proposed are:

· Complex data types should be allowed (beyond the three atomic types currently specified in the standard). There is also a need to be able to specify the complete types of variables during provisioning time (strong typing).

· The core BNF should be extended, partly because of the complex data types proposed, but also due to the fact that the current BNF allows limited expressions to be specified. Having a richer BNF allows for greater portability of policies to be possible (lesser dependence on vendor-specific extensions).

· I/O signatures should be specified along with the rulegroups, that describe what variables are required for input during rule evaluation, and what variables are returned as a result.

· The policy repository should allow meta-variables, and thus allow condition and action templates to be provisioned.

· The policy repository should be extended to allow rule templates to be stored as well, rather than simply storing unattached conditions and actions.

We now discuss each of the above items in detail.

Complex Data Types

Currently Parlay allows variables to have three atomic types only (TpInt32, TpFloat and TpString). These types are not enough to capture all data types which may need to be operated upon. For example, it is very convenient to operate on Boolean data types (it can be captured by TpInt32, but due to above arguments given for strong typing, having a separate Boolean type would be preferable). Similarly, it useful to operate on a structure (record), or a collection of data (lists). We propose the following data types be supported in addition to what Parlay currently supports.

1. Atomic Types: char, boolean, time
2. Complex Types: record of atomic types, list of atomic types, list of record types

Note that we are not proposing at this time that arbitrary nested data structures be supported. This is because, from past experience, we know that having the above complex data types has been sufficient to handle most kinds of rules/policies that we wanted to support. We feel that supporting the above data types is a good tradeoff between flexibility and ease of implementation / performance.

Individual elements/fields of complex variables can be accessed in the usual way. For example, accessing a list element is as follows:

List_variable[index]

It is up to the policy decision point to check for out of bounds access. Also note that we assume that lists are ordered, and can contain duplicates. If there is a necessity to have a set data type (that eliminates duplicates), it can be easily added.

Similarly, individual fields of record elements can be accessed via the dot notation:

Record_variable.field_name

ListOfRecord_variable[index].field_name

Complex variables would need to be typed as well (similar reasoning to that presented above for atomic variables). For example, for a record type variable, the names and types of all the fields in the records would need to be provisioned along with the rule-group.

The above data types seem sufficient for the time being, but it is conceivable that a need may arise in future to be able to access XML data, which should be supported as well. However, along with supporting the XML data-type, it is also necessary to allow complex operations on that data type. Such operations may include an ability to 1) access portions of the XML data, and 2) manipulate the XML data. The W3C consortium has recommended Xpath as a tree-traversal language that can be used to address individual subtrees/nodes of an XML document and may be sufficient to address (1). There is however the much more powerful XQuery (XML query language recommended by W3C) that can be used instead, though it is our opinion that it may be an overkill for the policy management domain. Requirement (2) can either be addressed by XSLT (tree transformation language) , or to some extent by XQuery itself. In any case, it is our strong opinion that standardized XML languages recommended by W3C be used instead of inventing our own language.

We also want to be able to manipulate variables of type list, i.e., a form of production style rules.

An implementation may decide to place syntactic restrictions on the use of list variables, e.g., to guarantee an unambiguous semantics for rule execution, to simplify the algorithms used to execute rules, or to simplify explanations of how decisions are rendered.

Strong Typing

Variables used in rules should be strongly typed, i.e., along with specifying the rules that make up a rulegroup, it should be required to specify the types of the variables involved in the rules. There are a number of advantages:

1. Better error checking during rule provisioning. If a variable is used in a particular rule condition/action, its type can be used to validate the specified condition/action. For example, suppose variables recvar and stringvar are used in a rulegroup. Let recvar be a variable of type record, with two fields i and s of atomic types integer and string respectively. Also, let stringvar be of type string. Then the following rule conditions can be determined to be valid (based on the variable types):

a. recvar.i * 2 < 5

b. stringvar == “allow”
On the other hand, the following conditions/actions are invalid:

a. recvar.i < stringvar
b. stringvar = recvar.i
Determining the validity of a rule condition/action as much as possible during provisioning is preferable (since it is done once) to run-time validation (which is required on every decision request).

2. Better run-time validation. There are cases where run-time validation is still required. For example, when a decision request is made to the rules engine, some input context information may need to be passed. The rules engine needs to verify the validity of the information it receives, along with how to decode it. If type information of variables is available to the rules engine, it can determine if the data types it receives in input context it receives matches the corresponding variable types provisioned.

3. Consistent use of variables across groups/domains. Since variables can be specified for domains/groups, specifying their types once allows the policy management infrastructure to consistently validate their usage in all domains/groups in which they are used.

BNF Extensions

The core BNF recommended by Parlay Policy can be extended and made a lot more useful. A proposed EBNF is given below (it can be extended as appropriate). Note that the EBNF assumes the complex types mentioned above.

Note that the EBNF only specifies the condition (and action) expressions. For example, the entire definition of the Parlay condition is not captured in the EBNF. Hence, the fact that a rule condition is CNF, or whether a predicate is negated, is not captured in the EBNF. Moreover, the EBNF only specifies the grammar for a single action, whereas a rule might contains multiple actions.

Following conventions of EBNF, the symbol double-quote (“) or single-quote (‘) are used as meta-symbols to delimit literals.

// definitions

digit

::= "0" | "1" | ... | "9";

letter

::= "a" | "b" | ... | "z" | "A" | "B" | ... | "Z";

alphanumeric
::= digit | letter;

char

::= alphanumeric | "\"" | "\'" | "." | "+" | ...;

identifier
::= letter {[alphanumeric | "_"]}*;

// constants

bool_const
::= "true" | "false";

char_const
::= "'" char "'";

string_const
::= '"' {char}* '"';

int_const
::= {digit}+;

float_const
::= {digit}+ "." {digit}*;

number::=

 int_const

| float_const

;

const::=

 bool_const

| char_const

| string_const

| number

;

// operators ("%" is the modulo operator, "in" can be used as

// a possibly non-contiguous subsequence operator, or as a

// set-containment operator)

// Note that the standard operator precedence will be enforced

// on top of this grammar.

unary_arith_op ::= "+" | "-";

binary_arith_op
::= "+" | "-" | "*" | "/" | "%";

boolean_op
::= "<=" | "<" | "==" | ">" | ">=" | "!=" | "in";

// expressions

arith_expr::=

 number

| unary_arith_op arith_expr

| arith_expr binary_arith_op arith_expr

| "(" arith_expr ")"

| attr_access

| func_call

;

predicate::=

 bool_const

| arith_expr boolean_op arith_expr

| (arith_expr | const) ("==" | "!=") (arith_expr | const)

| attr_access

| func_call

;

// attribute access -- used to specify attributes in rules

// The specified rules are for atomic, record of atomic,

// list of atomic, and list of record of atomic types respectively

simple_attr_access::=

 identifier

 | identifier "." identifier

 | identifier "[" arith_expr "]"

 | identifier "[" arith_expr "]" "." identifier

;

// elementwise_attr_access is used to denote implicit iteration

// on list variables (for production style rules), and to be able to

// reference the current element in the rule condition / actions.

elementwise_attr_access::=

 "?" identifier

 | "?" identifier "." identifier

;

attr_access ::=

 simple_attr_access

| elementwise_attr_access

;

// function call (for support functions)

expr
 ::= const | arith_expr | predicate;

expr_list ::= expr {"," expr}*;

func_call ::= identifier "(" [expr_list] ")";

// condition (in the Parlay sense of the word, i.e., atomic

// conditions, or predicates), and actions

// += is the append operation – it appends the RHS to the LHS list

condition
::= predicate;

action::=

 simple_attr_access "=" expr

 | identifier += expr

 ;

I/O Signatures

Chaining is a useful (and important) concept in rule evaluation, and can be mapped to data dependencies between the variables being used during rule evaluation, i.e., a variable is assigned to in one rule, and used in another. This implies that there might be certain variables that are used only temporarily during rule evaluation, as a mechanism to implement chaining. For example, consider the following rules:

If (Day == “Mon” && 0900 <= CurrentTime && CurrentTime <= 1700) Then

TimeCategory = “business”;

End

If (TimeCategory == “business” && Requestor == “manager” &&

 Device.Status == “ON”) Then

ReturnList += Device.ID;

End

The variable TimeCategory is only used as an intermediate variable whose value is used to affect execution of other rules (chaining), but may not be a variable whose value is returned back to the client making a decision request.

Functions/procedures in a programming language have a well defined I/O interface (i.e., which variables are required to be sent to the function, which variables are returned as a result, and which variables are only internal to the function.

Similarly, for rule groups, we feel that such a categorization of variables is useful. Hence, we categorize the variables into the following:

1. Input variables: These are the variables whose values must be specified when a decision request is made. Failure to specify their values may result in the decision request being aborted.

2. Intermediate variables: These are variables which are used during rule evaluation to store temporary or intermediate values.

3. Output variables: These are variables whose values are to be returned to the entity making the decision request.

The categorization may be a disjoint partition of the variable set, or there could be an overlap (e.g., an input variable that is also an output variable). The exact details are left to the implementation.

Meta Variables

We feel the notion of meta-variables makes the policy repository a lot more useful than it currently is. Currently, a policy repository can contain unattached conditions/actions that can be used to create new rules/rulegroups. The repository can be also used as a mechanism to constrain on what conditions/actions can be used to create rules. However, its usefulness is less apparent there. We now illustrate this with an example.

Consider a PAM scenario where the network operator wants to allow end-users to be able to create preferences based on the identify of the asker. So the network operator may create a corresponding unattached condition that checks for the asker identity. Assuming that asker is a variable that can be used in rules (a rule variable), an unattached condition might be:

(asker == “Bharat”)

The above unattached condition is not very useful since it can be used for only one asker. To provide this particular condition for all askers, the network operator would have to add one unattached condition for every asker, which is not practical. We introduce the concept of meta-variables to address this issue.

Meta-variables are placeholders that can be assigned values at provisioning time. These are different from rule variables that are assigned values at run-time. We use the notation $variable to refer to a meta-variable. For the example discussed above, the network operator would create an unattached condition

(asker == $ASKER)

and at rule-provisioning time, the value of $ASKER would need to be specified. Hence, one application could create a condition

(asker == “Bharat”)

on behalf of one user, and another condition

(asker == “Rick”)

on behalf of another user. In both cases, the actual variables used in the condition, as well as the structure of the condition, would be dictated by the unattached condition. It is easy to see that a similar reasoning can be applied towards unattached actions as well. We refer to conditions/actions containing meta-variables as condition/action templates.

The use of meta-variables allows the same condition/action template to be provisioned multiple times in the same rulegroup, with the same meta-variable being assigned (possibly) different values each time. For example, given the above condition template, the rule designer can provision two different rules, the first containing a condition (asker == “Bharat”) and the second containing the condition (asker == “Rick”).

It is easy to see that it is not possible to simulate this behavior by simply using rule variables instead of meta-variables, and passing the required value at run-time, since that would require creating a different rule variable for each different value to be provisioned.

Rule Templates

Currently, policy repository is used to store unattached conditions and actions only. With the introduction of meta-variables, it would be very natural to store entire rules (containing meta-variables) as well. We refer to these as rule templates. The advantage of rule templates is obvious: they allow easy customization for specific applications/users, yet at the same time constrain the rule structure and behavior according to the rule template. An example of a rule template would be:

If (asker == $ASKER) Then

 Allow = true;

End

