Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020690

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correction to Authentication Process

	
	

	Source:
(

	Ultan Mulligan, ETSI

	
	

	Work item code:
(

	OSA2
	
	Date: (

	12/07/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The current description of the authentication processes in the Framework needs improvement.
There are two authentication processes: one where the Framework authenticates the client, and results in the client's right to invoke requestAccess(), the other where the client authenticates the Framework. These are often mixed in the specification, where there should be no link between them.
There is little description of the use of selectEncryptionMethod or of abortAuthentication, or the reasons of consequences of use of these methods.
The STD for IpAPILevelAuthentications shows the two authentication processes and a strict order on their use (Framework authenticates client first).
The Sequence Diagram "Initial Access" shows the reverse order of use of the authentication processes (client authenticates Framework first).
The Sequence Diagram "Initial Access for Trusted Parties" should not use APILevel Authentication interfaces, if both parties know they are trusted. Also, the selectEncryptionMethod() method is not shown in the diagram, and should be required for APILevelAuthentication, since not calling it will prevent the Framework from ever (re-)authenticating the client

	
	

	Summary of change:
(

	Sequence Diagrams have been overhauled.
Clarifications have been introduced into the descriptions of most authenticaiton methods to split the two authentication processes.
Two state transition diagrams have been introduced to replace the existing IpAPILevelAuthentication STD.

	
	

	Consequences if
(

not approved:
	The authentication processes form the first point of contact between a Framework and either an application or an SCF. Failure to clarify these processes sufficiently will result in significant interoperabilty problems, before any 'real' interworking between an application and the Framework, or SCFs, can take place.

	
	

	Clauses affected:
(

	6

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for authenticated parties

The following figure shows a party, already authenticated using API Level Authentication, accessing the OSA Framework. After contacting the Initial interface the Framework will indicate, using the authenticationSucceeded() method, that no further authentication is needed and that the application can immediately gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method.

[image: image1.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

 :

IpAPILevelAuthentication

 : IpAccess

Framework

1: initiateAuthentication()

3: authenticationSucceeded()

4: requestAccess()

2: selectEncryptionMethod()

1:
The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
The Client invokes the selectEncryptionMethod() on the Framework's authentication interface. Although authentication will not take place this time, since the parties consider themselves already authenticated, failure to invoke this method will prevent the Framework from ever re-authenticating the Client, if it wishes to at a later stage.

3:
Based on the information that was supplied in the Initiate Authentication step, the Framework knows it deals with an authenticated party and no further authentication is needed. Therefore the Framework provides the authentication succeeded indication. Note that the Client could decide to authenticate the Framework, independantly of whether the Framework authenticates the Client. This is not shown here.
3:
The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.
Independantly, the client could decide to authenticate the Framework, before deciding to continue using the interfaces provided by the Framework.
[image: image3.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

1:
Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
The client authenticates the Framework, issuing a challenge in the authenticate() method.
4:
The client provides an indication if authentication succeeded.

5:
The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the client's API Level Authentication interface. In each invocation, the Framework supplies a challenge and the client returns the correct response. The Framework could authenticate the client before the client authenticates the Framework, or afterwards, or the two authentication processes could be interleaved.
6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface. The client may decide not to invoke requestAccess until it too has authenticated the Framework.
8:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.3 Initial Access for Trusted Parties or using Underlying Authentication Mechanism
The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have mutually authenticated one another using an underlying distribution technology mechanism, or the client and the framework reside in the same domain, and each recognises the other as a trusted party, not requiring authentication.

[image: image4.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution Technology Mechanism is used for client identification

and authentication, or both the client and the framework recognise each other

as trusted parties not requiring API level authentication.

There is no requirement as to when authentication should take place using the

Underlying Distribution Technology Mechanism: before initiateAuthentication()

is invoked, after requestAccess() is invoked, or between the two.

1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the API.
2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the client. The framework then chooses an encryption method based on the encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact two authentication processes: authentication of the client performed by the Framework , and authentication of the Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully. Mutual authentication may not necessarily be required, e.g. it could be that a client may not need to authenticate the Framework. There is also no required order for the execution of these two authentication processes.
Note that at any point during the access session, either side can request re-authentication of the other side.
[image: image6.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

7: requestAccess()

6.2 Class Diagrams

[image: image7.wmf]IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for a client to access a Framework provider;

-
the authentication methods for the client and Framework provider to perform an authentication protocol;

-
the client with the ability to select a service capability feature to make use of;

-
the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication;

3)
Access to Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpClientAPILevelAuthentication

	

	authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method

authenticate()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.
The invocation of this method may be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the Framework, and not wait unitl the Framework has responded to any challenge the client may issue.
Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Method

abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework. This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, however).
Parameters

No Parameters were identified for this method

Method

authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.
Parameters

No Parameters were identified for this method

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session.

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown.
digitalSignature : in TpOctetSet

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate authentication with the Framework.

	<<Interface>>

IpInitial

	

	initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method

initiateAuthentication()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.
The Authentication Framework interface is used by client to request access to other interfaces supported by the Framework. The authentication process should in this case be done with some underlying distribution technology authentication mechanism, e.g. CORBA Security.

	<<Interface>>

IpAuthentication

	

	requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

Method

requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code (P_ACCESS_DENIED) is returned.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.
clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE, P_INVALID_INTERFACE_TYPE
6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client to authenticate the Framework. It is also used to initiate the authentication process.
	<<Interface>>

IpAPILevelAuthentication

	

	selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method

selectEncryptionMethod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method). The encryption method chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client.
This method shall always be invoked by the client after it receives a reference to IpAPILevelAuthentication. Failure to do so will prevent both the framework and the client from ever authenticating each other.
Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.
The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
Method

authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.
Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.
	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

releaseInterface (interfaceName : in TpInterfaceName) : void

Method

obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE
Method

endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY
Method

listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Parameters

No Parameters were identified for this method

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

releaseInterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams
6.4.1.1 State Transition Diagrams for IpInitial

[image: image8.wmf]Active

initiateAuthentication / return new IpAuthentication

Figure : State Transition Diagram for IpInitial

6.4.1.1.1 Active State

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

[image: image9.wmf]Idle

Authenticating

Framework

Framework

Authenticated

IpInitial.initiateAuthentication

authenticate / Client

challenges FW

selectEncryptionMethod

authenticate / Client

re-authenticates FW

selectEncryptionMethod

authenticationSucceeded / Client

satisfied with FW response

FW Aborts

^IpClientAPILevelAuthentication.abortAuthentication

selectEncryptionMethod

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework
[image: image11.wmf]Idle

IpInitial.initiateAuthentication

Authenticating

Client

selectEncryptionMethod

FW challenges Client

^IpClientAPILevelAuthentication.authenticate

Client

Authenticated

requestAccess / new lpAccess

requestAccess

^P_ACCESS_DENIED

requestAccess

^P_ACCESS_DENIED

FW re-authenticates Client

^IpClientAPILevelAuthentication.authenticate

selectEncryptionMethod

FW Satisfied with Client response

^IpClientAPILevelAuthentication.authenticationSucceeded

abortAuthentication /

Client Aborts

Invalid Client Response

selectEncryptionMethod

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client
6.4.1.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking selectEncryptionMethod.
6.4.1.2.2

6.4.1.2.3 Authenticating Framework State
When entering this state, the client requests the Framework to authenticate itself by invoking the authenticate method on the Framework. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities.
6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method on the client. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities.
6.4.1.2.5 Framework Authenticated State
This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the authenticate method, resulting in a transition back to Authenticating Framework state. The client may also call selectEncryptionMethod to choose other encryption capabilities.
6.4.1.2.6 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other encryption capabilities.
6.4.1.3 State Transition Diagrams for IpAccess

[image: image12.wmf]Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

endAccess / destroy all interface objects used by the client

network operator initiated endAccess / destroy all interface objects used by the client

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the IpInitial interface, an object implementing the IpAccess interface is created. The client can now request other Framework interfaces, including Service Discovery. When the client is no longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all interface objects used by the client. In case the network operator decides that the client has no longer access to the interfaces the same will happen.
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 24

