[image: image3.wmf]

TD <>
Draft ETSI ES 202 915-1 V0.0.1 (2002-06)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Part 1: Overview

[image: image1.png]
Reference

DES/SPAN-120091-1

Keywords

API, OSA, IDL, UML

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© The Parlay Group 2002.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

5Intellectual Property Rights

Foreword
5
1
Scope
7
2
References
7
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
10
4
Open Service Access API's
10
5
Document structure
11
6
Methodology
13
6.1
Tools and Languages
13
6.2
Packaging Structure
13
6.3
Colours
15
6.4
Naming scheme
15
6.5
State Transition Diagram text and text symbols
16
6.6
Exception handling and passing results
16
6.7
References
16
6.8
Strings and Collections
16
6.9
Prefixes
16
Annex A (normative): OMG IDL
17
A.1
Tools and languages
17
A.2
Strings and collections
17
A.3
Naming space across CORBA modules
17
Annex B (informative): W3C WSDL
18
B.1
Tools and Languages
18
B.2
Proposed Namespaces for the OSA WSDL
18
B.3
Object References
19
B.4
Mapping UML Data Types to XML Schema
20
B.4.1
Data Types
20
B.4.1.1
<<Constant>>
20
B.4.1.2
<<NameValuePair>>
20
B.4.1.3
<<SequenceOfDataElements>>
20
B.4.1.4
<<TypeDef>>
21
B.4.1.5
<<NumberedSetOfDataElements>>
21
B.4.1.6
<<TaggedChoiceOfDataElements>>
22
B.5
Mapping of UML SCF to WSDL
23
B.5.1
Mapping of Operations to WSDL message element
23
B.5.2
Mapping of Exception to WSDL message element
23
B.5.3
Mapping of CommonExceptions to WSDL message element
24
B.5.4
Mapping of Interface Class to WSDL portType and binding elements
24
B.5.5
Mapping of UML SCF to WSDL service element
25
Annex C (informative): Java API
27
C.1
Tools and Languages
27
C.2
JAIN SPA Overview
27
Annex D (informative): Bibliography
28
History
29

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (ES 202 915) is structured in the following parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control";

Sub-part 1: "Call Control Common Definitions";

Sub-part 2: "Generic Call Control SCF";

Sub-part 3: "Multi-Party Call Control SCF";

Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF";

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";

Part 10:
"Connectivity Manager SCF";

Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

Part 13:
"Policy Management SCF";

Part 14:
"Presence and Availability Management SCF";

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP, in co-operation with a number of JAIN™ Community [25] member companies.

The present document forms part of the Parlay 4 set of specifications.

1 Scope

The present document is the part 1 of the Stage 3 specification for an Application Programming Interface for Open Service Access (OSA), and provides an overview of the content and structure of the various parts of the present document, and of the relation to other standards documents.

The OSA specifications define an architecture that enables service application developers to make use of network functionality through an open standardized interface, i.e. the OSA APIs.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
ETSI TS 122 024: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Description of Charge Advice Information (CAI) (3GPP TS 22.024)".

[3]
ITU-T Recommendation Q.850: "Usage of cause and location in the Digital Subscriber Signalling System No. 1 (DSS1) and the Signalling System No. 7 (SS No. 7) ISDN User Part (ISUP)".

[4]
ITU-T Recommendation Q.2931: "Digital Subscriber Signalling System No. 2 - User-Network Interface (UNI) layer 3 specification for basic call/connection control".

[5]
ETSI TS 122 101: "Universal Mobile Telecommunications System (UMTS); Service aspects; Service principles (3GPP TS 22.101)".

[6]
World Wide Web Consortium: "Composite Capability/Preference Profiles (CC/PP): A user side framework for content negotiation". (http://www.w3.org/TR/NOTE-CCPP/).

[7]
ETSI TS 129 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Mobile Application Part (MAP) specification (3GPP TS 29.002)".

[8]
ETSI TS 129 078: "Universal Mobile Telecommunications System (UMTS); Digital cellular telecommunications system (Phase 2+); Customised Applications for Mobile network Enhanced Logic (CAMEL); CAMEL Application Part (CAP) specification (3GPP TS 29.078)".

[9]
Wireless Application Protocol (WAP), Version 2.0: "User Agent Profiling Specification" (WAP‑248) (http://www.wapforum.org/what/technical.htm).
[10]
Wireless Application Protocol (WAP), Version 2.0: "WAP Service Indication Specification" (WAP‑167) (http://www.wapforum.org/what/technical.htm).
[11]
Wireless Application Protocol (WAP), Version 2.0: "Push Architectural Overview"
(WAP‑250) (http://www.wapforum.org/what/technical.htm).
[12]
Wireless Application Protocol (WAP), Version 2.0: "Wireless Application Protocol Architecture Specification" (WAP‑210) (http://www.wapforum.org/what/technical.htm).
[13]
IDL to Java Compiler (http://java.sun.com/products/jdk/idl/index.html).
[14]
"UML Unified Modelling Language". (http://www.omg.org/uml).

[15]
"Object Management Group". (http://www.omg.org/).

[16]
ETSI TS 122 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Circuit Bearer Services (BS) supported by a Public Land Mobile Network (PLMN) (3GPP TS 22.002)".

[17]
ETSI TS 122 003: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Circuit Teleservices supported by a Public Land Mobile Network (PLMN) (3GPP TS 22.003)".

[18]
ETSI TS 124 002: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); GSM - UMTS Public Land Mobile Network (PLMN) access reference configuration (3GPP TS 24.002)".

[19]
ITU-T Recommendation Q.763: "Signalling System No. 7 - ISDN User Part formats and codes".

[20]
ITU-T Recommendation Q.931: "ISDN user-network interface layer 3 specification for basic call control".

[21]
ISO 8601: "Data elements and interchange formats - Information interchange - Representation of dates and times".

[22]
ISO 4217: "Codes for the representation of currencies and funds".

[23]
ISO 639: "Code for the representation of names of languages".

[24]
“The Parlay Group homepage” (http://www.parlay.org)
[25]
“JAIN Community homepage” (http://www.java.sun.com/products/jain)
[26]
IETF RFC 822: "Standard for the format of ARPA Internet text messages".

[27]
IETF RFC 1738: "Uniform Resource Locators (URL)".

[28]
ETSI TS 129 198 (V3.2.0): "Universal Mobile Telecommunications System (UMTS); Open Service Architecture Application Programming Interface - Part 1 (3GPP TS 29.198 version 3.2.0 Release 1999)".

[29]
ETSI TS 123 107: "Universal Mobile Telecommunications System (UMTS); Quality of Service (QoS) concept and architecture" (3GPP TS 23.107)".

[30]
“JSR Overview” (http://jcp.org/jsr/overview/index.en.jsp)
[31]
“Java 2 SDK, Standard Edition” (http://java.sun.com/j2se/1.4/docs/relnotes/features.html)

[32]
“Java Community Process” (http://jcp.org/)

[33]
"World Wide Web Consortium homepage" (http://www.w3c.org)
[34]
ETSI TS 123 271 "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS);
Functional stage 2 description of location services (3GPP TS 23.271)"
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS 122 101 [5] and the following apply:
applications: services, which are designed using service capability features

gateway: synonym for Service Capability Server

NOTE:
From the viewpoint of applications, a Service Capability Server can be seen as a gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider

NOTE:
This is a VASP that has an agreement with the Home Environment to provide services.
Home Environment: responsible for overall provision of services to users

Local Service: service which can be exclusively provided in the current serving network by a Value Added Service Provider

OSA Interface: standardized Interface used by application to access service capability features
Personal Service Environment (PSE): contains personalized information defining how subscribed services are provided and presented towards the user

NOTE:
The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities (SC): bearers defined by parameters, and/or mechanisms needed to realize services

NOTE:
These are within networks and under network control.

Service Capability Feature (SCF): functionality offered by service capabilities that are accessible via the standardized OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Service: alternative for Service Capability Feature (in the present document)

User Interface Profile: contains information to present the personalized user interface within the capabilities of the terminal and serving network

User Profile: label identifying a combination of one user interface profile, and one user services profile

User Services Profile: contains identification of subscriber services, their status and reference to service preferences

Value Added Service Provider: provides services other than basic telecommunications service for which additional charges may be incurred

Virtual Home Environment: concept for personal service environment portability across network boundaries and between terminals

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 121 905 [1] and the following apply:
API
Application Programming Interface

CAMEL
Customized Application for Mobile Network Enhanced Logic

CSE
Camel Service Environment

HE
Home Environment

HE-VASP
Home Environment Value Added Service Provider

HLR
Home Location Register

IDL
Interface Description Language
JSR
Java Specification Request
INAP
Intelligent Networks Application Part

MAP
Mobile Application Part

ME
Mobile Equipment

MExE
Mobile Station (Application) Execution Environment

MS
Mobile Station

MSC
Mobile Switching Centre

OSA
Open Service Access

PLMN
Public Land Mobile Network

PSE
Personal Service Environment
RMI
Java Remote Method Invocation
SAT
SIM Application Tool-Kit

SC
Service Capabilities

SCF
Service Capability Feature

SCP
Service Control Point

STD
State Transition Diagrams

SIM
Subscriber Identity Module

SMS
Short Message Service

SMTP
Simple Mail Transfer Protocol
SOAP
Simple Object Access Protocol
SPA
Service Provider API

USIM
User Service Identity Module

VASP
Value Added Service Provider

VHE
Virtual Home Environment

VLR
Visited Location Register

WAP
Wireless Application Protocol

WGP
Wireless Gateway Proxy

WPP
Wireless Push Proxy

WSDL
Web Services Definition Language
XML
Extensible Markup Language
4 Open Service Access API's

The OSA specifications define an architecture that enables service application developers to make use of network functionality through an open standardized interface, i.e. the OSA API's. The network functionality is describes as Service Capability Features or Services (see note). The OSA Framework is a general component in support of Services (Service Capabilities) and Applications.

The OSA API is split into three types of interface classes, Service and Framework.

· Interface classes between the Applications and the Framework, that provide applications with basic mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

· Interface classes between Applications and Service Capability Features (SCF), which are individual services that may be required by the client to enable the running of third party applications over the interface e.g. Messaging type service.

· Interface classes between the Framework and the Service Capability Features, that provide the mechanisms necessary for multi-vendorship.

· Interface classes between the Enterprise Operator and the Framework that provides the Enterprise Operator with basic mechanisms to allow them to administer client application accounts and to manage their service contracts and profiles.

These interfaces represent interfaces 1, 2, 3 and 4 of the figure 1. The other interfaces are not yet part of the scope of the work.

[image: image2.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

this version of

the API

Not in scope of

this version of

the API

Telecom Network

Not in scope of

this version of

the API

Not in scope of

this version of

the API

2

2

6

6

Client

Application

Not in

scope

of this API

version

Figure 1

Within the OSA concept a set of Service Capability Features has been specified. The OSA documentation is structured in parts. The first Part (the present document) contains an overview, the second Part contains common Data Definitions, the third Part the Framework interfaces. The rest of the Parts contain the description of the SCFs.

NOTE:
The terms "Service" and "Service Capability Feature" are used as alternatives for the same concept in the present document. In the OSA API itself the Service Capability Features as identified in the 3GPP requirements and architecture are reflected as 'service', in terms like service instance lifecycle manager, serviceDiscovery.

5
Document structure

The OSA API documentation contains two document sets:

The API specification (ES 202 915)
The Parts of the present document ES 202 915 (apart from 1 (the present document) and 2) define the interfaces, parameters and state models that form part of the API specification. UML is used to specify the interface classes. As such it provides a UML interface class description of the methods (API calls) supported by that interface and the relevant parameters and types. The interfaces are specified both in IDLand in WSDL . Reference is made to the Java API specification of the interfaces.

The Mapping specification of the OSA APIs and network protocols (TR 101 917)
The Parts of TR 101 917 contain a possible mapping from the API's defined in ES 202 915 to various network protocols (i.e. MAP [7], CAP [8], etc.). It is an informative document, since this mapping is considered as implementation/vendor dependent. On the other hand this mapping will provide potential service designers with a better understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to these interface classes.

The purpose of the OSA API is to shield the complexity of the network, its protocols and specific implementation from the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server interacts with in order to provide the Service Capability Features to the application. The specific underlying network and its protocols are transparent to the application.

The API specification ES 202 915 is structured in the following parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control SCF";

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";

Part 10:
"Connectivity Manager SCF";

Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

The Mapping document TR 101 917 is also structured according to the same parts. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept. Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Structure of the Parts of ES 202 915:

The Parts with API specification themselves are structured as follows:
· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of the present document.

The OSA API is defined using UML and as such is technology independent. OSA can be realised in a number of ways and in addition to the UML defined OSA API, the OSA specification includes:

· A normative annex with the OSA API in IDL that specifies the CORBA distribution technology realisation

· An informative annex with the OSA API in WSDL that specifies the SOAP/HTTP distribution technology realisation

· An informative annex that references the OSA API in Java (known as JAIN™ Service Provider API) that specifies the Java local API technology realisation

·
6
Methodology

Following is a description of the methodology used for the establishment of API specification for OSA.

6.1
Tools and Languages

The Unified Modelling Language (UML) [14] is used as the means to specify class and state transition diagrams.

6.2
Packaging Structure

A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

The following diagram shows the packaging hierarchy. The root package is shown on the left most side of the figure. Extending from the root package are the framework and services branch packages, then the associated leaf packages. Listed against each package are the interfaces, data types, exceptions and service properties it contains.

	Packaging Hierarchy
	Contains

	org.csapi
	
	
	
	
	
	
	IpInterface

IpService

All common data types

All common exceptions

All common service properties

	
	
	.fw
	
	
	
	
	Common Framework data types

Common Framework exceptions

Common Framework service properties

	
	
	
	
	.access
	
	
	

	
	
	
	
	
	
	.trust_and_security
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.application
	
	
	

	
	
	
	
	
	
	.notification
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.integrity
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.service_agreement
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.discovery
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.enterprise_operator
	
	
	

	
	
	
	
	
	
	.service_subscription
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	service
	
	
	

	
	
	
	
	
	
	.notification
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.integrity
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.discovery
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.service_lifecycle
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.service_registration
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	.services
	
	
	
	
	Common Service data types

Common Service exceptions

Common Service service properties

	
	
	
	
	.cc
	
	
	Common Call Control data types

Common Call Control exceptions

Common Call Control service properties

	
	
	
	
	
	
	.gccs
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.mpccs
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.mmccs
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.cccs
	Package interfaces

Package data types

Package exceptions

Package service properties

	[image: image3.wmf]
	
	
	
	.ui
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.mm
	
	
	Common Mobility management data types

Common Mobility management exceptions

Common Mobility management service properties

	
	
	
	
	
	
	.ul
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.ulc
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.ule
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	
	
	.us
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.termcap
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.dsc
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.gms
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.cm
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.am
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

	
	
	
	
	.cs
	
	
	Package interfaces

Package data types

Package exceptions

Package service properties

NOTE 1:
Not all the packages given above may be found in the 3GPP OSA specifications.

NOTE 2:
Where data types, exceptions and service properties are indicated in the figure above their presence, or otherwise, is dependent upon the package in question. For example, if there are no common Framework exceptions then none will be present in the org.csapi.fw package.

6.3
Colours

For clarity, class diagrams follow a certain colour scheme. Blue for application interface packages and yellow for all the others.

6.4
Naming scheme

The following naming scheme is used for documentation.

packages:

lowercase

Using the domain-based naming (For example, org.csapi)

classes, structures and types. Start with T:

TpCapitalizedWithInternalWordsAlsoCapitalized

Exception class:

TpClassNameEndsWithException and P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

Interface. Start with Ip:

IpThisIsAnInterface

constants:

P_UPPER_CASE_WITH_UNDERSCORES_AND_START_WITH_P

methods:

firstWordLowerCaseButInternalWordsCapitalized()

method's parameters:

firstWordLowerCaseButInternalWordsCapitalized

collections (set, array or list types):

TpCollectionEndsWithSet

class/structure members:

FirstWordAndInternalWordsCapitalized

Spaces in between words are not allowed.

6.5 State Transition Diagram text and text symbols

The descriptions of the State Transitions in the State Transition Diagrams follow the convention:

when_this_event_is_received [guard condition is true] /do_this_action ^send_this_message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified which one).

6.6
Exception handling and passing results

OSA methods communicate errors in the form of exceptions. OSA methods themselves always use the return parameter to pass results. If no results are to be returned a void is used instead of the return parameter. In order to support mapping to as many languages as possible, no method out parameters are allowed.

6.7
References

In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by reference, and the "Ref" suffix is appended to their corresponding type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirection.

	Original type
	IN parameter declaration
	

	IpInterface
	parm : IN IpInterfaceRef
	

6.8
Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string. For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set.

6.9
Prefixes

OSA constants and data types are defined in the global name space: org.csapi module.

Annex A (normative):
OMG IDL

A.1
Tools and languages

The Object Management Group's (OMG) [15] Interface Definition Language (IDL) is used as a means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified using a CORBA2 (orbos/97-02-25) compliant IDL compiler, e.g. "SUN IDL Compiler [13].

A.2
Strings and collections

In IDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitive is made up of a length and a variable array of byte.

NOTE:
A typedef is a type definition declaration in IDL.

In OMG IDL, this maps to a sequence of the data type. A CORBA sequence is implicitly made of a length and a variable array of elements of the same type.

EXAMPLE 1:
typedef sequence<TpSessionID> TpSessionIDSet;
Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part, and an array for the data part.
EXAMPLE 2:
The TpAddressSet data type may be defined in C++ as:
typedef struct {

 short number;

 TpAddress address [];

} TpAddressSet;

The array "address" is allocated dynamically with the exact number of required TpAddress elements based on "number".
A.3
Naming space across CORBA modules

The following shows the naming space used in the present document.

module org {

module csapi {

/* The fully qualified name of the following constant is org::csapi::P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_THIS_IS_AN_OSA_GLOBAL_CONST= 1999;

// Add other OSA global constants and types here

module fw {

/* no scoping required to access P_THIS_IS_AN_OSA_GLOBAL_CONST */

const long P_FW_CONST= P_THIS_IS_AN_OSA_GLOBAL_CONST;

};

module mm {

// scoping required to access P_FW_CONST

const long P_M_CONST= fw::P_FW_CONST;

};

};

};

Annex B (informative):
W3C WSDL

B.1
Tools and Languages

The W3C [33] WSDL (Web Services Definition Language) is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. WSDL files are generated from the UML model using scripts. The generated WSDL files are verified using WSDL compilers.. The WSDL is based on W3C WSDL 1.1

B.2
Proposed Namespaces for the OSA WSDL

Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The Namespace Prefix and the Namespace are noted below.

xmlns:wsdl = ‘http://http://schemas.xmlsoap.org/wsdl/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:SOAP-ENC=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:xsd:=’http://www.w3c.org/2001/XMLSchema’

There are also OSA specific namespaces which are used within the OSA WSDL documents. The OSA related namespaces present within each WSDL document depends on the WSDL document and which WSDL documents it imports. The guidelines used to derive these namespaces are:

· The root namespace for the OSA WSDL and XML schemas is http://www.csapi.org/

· There is one document generated for each component (Module) within the Analysis UML model. The document will have the name of the UML component with the extension ‘.wsdl’ For each wsdl document generated the following additional namespaces will be included:

· xmlns:<component name>=’http://www.csapi.org/<component name>/wsdl’

· xmlns:<component name>xsd=’http://www.csapi.org/<component name>/schema’

· For each OSA wsdl document which is referenced by an import statement within the current wsdl document then the following additional namespaces will be included.

· xmlns:<imported component name>=’http://www.csapi.org/<imported component name>/wsdl’

· xmlns:<imported component name>xsd=’http://www.csapi.org/<imported component name>/schema’

· Attributes which require a QName value shall use the appropriate Namespace Prefix (as defined in the definitions element of the wsdl file) to qualify the element being referenced.

The namespaces are defined within the ‘definitions’ element of a wsdl document. For example, the definitions element of the am.wsdl document would look like:

<definitions

 name='am'

 targetNamespace='http://www.csapi.org/am/wsdl'

 xmlns='http://schemas.xmlsoap.org/wsdl/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:am='http://www.csapi.org/am/wsdl'

 xmlns:amxsd='http://www.csapi.org/am/schema'

 xmlns:osa='http://www.csapi.org/osa/wsdl'

 xmlns:osaxsd='http://www.csapi.org/osa/schema'>

<import namespace='http://www.csapi.org/osa/wsdl'

 location='osa.wsdl' />

B.3
Object References

Object references are used to identify an particular remote object instance. Object references are used in two ways:

1. Passed as a parameter within a method to a remote object.

2. Included within a message to identify the object for which the message is intended.

Within the context of SOAP, an object reference can be represented as a URL appended with a String. The String suffix identifies the particular remote object instance in the context of the URL.

An object reference will be represented by the new type ObjectRef. The ObjectRef type is defined within osa.wsdl as:

<xsd:simpleType name=’Objectref’>

 <xsd:restriction base=’xsd:anyURI’ />

</xsd:simpleType>

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. Each interface will have a corresponding reference type associated with it. The interface reference will be defined as:

<xsd:simpleType name=’InterfaceNameRef’>

 <xsd:restriction base=’osaxsd:ObjectRef’ />

</xsd:simpleType>

where InterfaceName is the name of the particular interface.

When an object reference is used to identify the intended recipient of a message, then the object reference is included in the SOAP Header element as an ObjectRefHeader. The ObjectRefHeader is defined in the osa.wsdl document as follows:

<message name='ObjectRefHeader'>

 <part name='header' element='osaxsd:ObjectRef' />

</message>

Within each method, the ObjectRefHeader is bound to the message within the wsdl soap:header element of the input message of the binding element. For example:

<binding name='IpAccountManagerBinding' type='am:IpAccountManager'>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 <operation name='createNotification'>

 <soap:operation soapAction='http://www.csapi.org/am/IpAccountManager#createNotification' />

 <input>

 <soap:body

 encodingStyle='http://schemas/xmlsoap.org/soap/encoding/'

 namespace = 'http://www.csapi.org/am.wsdl'

 use='encoded' />

 <soap:header

 message='osaxsd:ObjectRefHeader' part='header' />
 </input>
B.4
Mapping UML Data Types to XML Schema

B.4.1
Data Types

B.4.1.1
<<Constant>>

The UML Constant data type contains the following attributes:

· Name

· Constant Value

This type would then map to the following XML Schema construct:

This mapping assumes that all constants are of type TpInt32

<xsd:simpletype name=”Name”>

<xsd:restriction base=”osaxsd:TpInt32”>

<xsd:minInclusive value=”Constant Value” />

<xsd:maxInclusive value=”Constant Value” />

</xsd:restriction>

</xs:simpleType>

B.4.1.2
<<NameValuePair>>

The UML NameValuePair data type contains the following attributes:

· Name

· Attributes

· Name

This type would then map to the following XML Schema construct:

<xsd:simpleType base=”xsd:string” name=”Name”>

 <xsd:restriction base=”xsd:String”>

 <xsd:enumeration value=”Attribute-Name” />

 <xsd:enumeration value=”Attribute-Name” />

 …

 <xsd:enumeration value=”Attribute-Name” />

 </xsd:restriction>

</xsd:simpleType>

B.4.1.3
<<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

· Name

· Roles

· Name

· Type

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”

<xsd:sequence>

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

 …

<xsd:element

Name=”Role-Name”

type=”Role–Type” />

</xsd:sequence>

</xsd:complexType>

B.4.1.4
<<TypeDef>>

The UML TypeDef data type contains the following attributes:

· Name

· ImplementationType

If the Implementation type is a technology specific type, then the following mappings have been made:

TpBoolean – xsd:boolean

TpInt32 – xsd:float

TpFloat – xsd:float

TpLongString – xsd:string

TpString – xsd:string

TpOctet – xsd:hexBinary

This type would then map to the following XML Schema construct:

<complexType name=”Name” base=”ImplementationType” />

B.4.1.5
<<NumberedSetOfDataElements>>

The UML NumberedSetOfDataElements data type for sequences types contains the following attributes:

· Name

· ImplementationType

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>

 <xsd:sequence>

 <xsd:element

 name=”Name”

 type=”ImplementationType”

 minOccurs=”0”

 maxOccurs=”unbounded” />

 </xsd:sequence>

</xsd:complexType>

B.4.1.6
<<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOfDataElements data type contains the following attributes:

· Name

· SwitchType

· Roles

· Name

· Type

This type would then map to the following XML Schema construct:

<xsd:complexType name=”Name”>

<xsd:element name=”SwitchName” type=”SwitchType” />

<xsd:choice>

<xsd:element name=”Role-Name” type=”Role-Type” />

<xsd:element name=”Role-Name” type=”Role-Type” />

…

<xsd:element name=”Role-Name” type=”Role-Type” />

</xsd:choice>

</complexType>

B.5
Mapping of UML SCF to WSDL

B.5.1
Mapping of Operations to WSDL message element
A UML Operation contains the following attributes:

· Name

· Module Name

· Return Type

· Parameter

· Name

· Type

This type would then map to the following XML Schema construct:

<message name="Name">

<part

name="Parameter-Name"

type="Parameter-Type"/>

…

<part

name="Parameter-Name"

type="Parameter-Type"/>

</message>

<message name="NameResponse">

<part name="return" type="ReturnType"/>

</message>

Note: If the ReturnType is void, then no ‘type’ attribute would be included in the Response message.

B.5.2
Mapping of Exception to WSDL message element

A UML Exception has the following attributes:

· Name

All exceptions (except for CommonException), contain a parameter called ExtraInformation which is of type TpString.

This type would then map to the following XML Schema Construct:

<message name=”Name”>

<part

name=”ExtraInformation”

type=”osaxsd:TpString”/>

</message>
B.5.3
Mapping of CommonExceptions to WSDL message element

The UML CommonExceptions type has the following attributes:

· Name (“CommonExceptions”)

The UML CommonException contains two parameters; ExceptionType which is of type osaxsd:TpInt32 and ExtraInformation which is of type osaxsd:TpString.

This type would then map to the following XML Schema Construct:

<message name=”CommonExceptions”>

<part

name=”ExceptionType”

type=”osaxsd:TpInt32” />

<part

name=”ExtraInformation”

type=”osaxsd:TpString” />

</message>
B.5.4
Mapping of Interface Class to WSDL portType and binding elements

A UML Interface Class contains the following attributes:

· Name

· Associated module (i.e. component)

· Operations

· Name

· Parameters

· Name

· Exceptions

· Name

This type would then map to the following WSDL portType element:

<portType name="Name">

<operation

name="Operation-Name"

<input message="Operation-Name"/>

<output message="Operation-NameResponse"/>

<fault message=”Operation–Exception– Name” />

…

<fault message=”Operation–Exception–Name” />

</operation>

…

<operation

name="Operation-Name"

<input message="Operation-Name"/>

<output message="Operation-NameResponse"/>

<fault name=”Operation-Exception-Name” message=”Operation–Exception–Name” />

…

<fault message=”Operation–Exception–Name” />

</operation>

</portType>

This type would also then map into the following WSDL binding element:

<binding

name="Interface-NameBinding"

type="Interface-Name">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="Operation-Name">

<soap:operation soapAction="http://www.csapi.org/am/Name#Operation-Name"/>

<input>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://www.csapi.org/Module-Name.wsdl"

use="encoded"/>

 <soap:header message=”osaxsd:ObjRefHeader” part=”header” />

</input>

<output>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace=" http://www.csapi.org/Module-Name.wsdl "

use="encoded"/>

</output>

 <fault>

 <soap:fault name=”Operation-Exception-Name”

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://www.csapi.org/Module-Name.wsdl"

use="encoded"/>

 </fault>

 … additional fault elements

</operation>

… additional operation elements

</binding>

B.5.5
Mapping of UML SCF to WSDL service element

A UML Module contains the following attributes:

· Name

· Interfaces

· Name

This type would then map to the following WSDL service element:
<service name="Name">

<port binding="Interface-NameBinding" name="Interface-Name">

<soap:address location="http://{Service Address}"/>

</port>

… additional port elements

</service>

</definitions>

Annex C (informative):
Java API

C.1
Tools and Languages

The Java language is used as a means to programmatically define the interfaces. Java files are either generated manually from class diagrams or by using a UML tool and editing scripts. Either way, the Java files are generated by the JAIN Community [25] in accordance with the Parlay UML to Java API Rulebook [24], which define a set of rules that are used to rapidly generate the Java APIs from the OSA/Parlay UML.

The generated Java files are verified using Java compilers such as javac [31]. The Java API specifications are designed to be compatible with the Java 2 SDK, Standard Edition, version 1.4.0 [31] or later. The Java API Realizations of the OSA/Parlay APIs are known as the JAIN Service Provider APIs (JAIN SPA).

C.2
JAIN SPA Overview

JAIN SPA is a local Java API realization of the OSA/Parlay specifications. The benefits of providing a local API (in addition to a distribution or remote API, such as the OSA/Parlay OMG-IDL or the OSA/Parlay W3C WSDL) is that the API is tailored to a particular programming language (in this case it's Java), which is distribution mechanism independent, meaning that, providing the necessary adapters are put in place, Java applications can be written to this local API that use any form of technology (e.g. CORBA, SOAP, RMI) for the purpose of distributing this API. With remote APIs, although the programmer may be free to write in multiple programming languages, he needs knowledge of, and is committed to, the particular distribution mechanism (e.g. CORBA, SOAP, RMI).

As the OSA/Parlay UML assumes a remote API, many optimizations have been made to the specifications, which, although acceptable to a "specialist" programmer taking distribution into account, would appear alien to the large community of "regular" Java programmers. As such, the JAIN SPA specifications are tailored to the Java language by following Java language naming conventions, design patterns and object oriented practices for a local Java API, while reusing as much Java codebase as possible. JAIN Service Provider APIs are developed by the JAIN Community [25] under the Java Community Process (JCP) [32]. Within the JCP, each JAIN Service Provider API is developed by submitting a Java Specification Request (JSR) [30]. Each JAIN Service Provider API is assigned a JSR number, and an associated webpage, that can be used to identify it.

Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay, ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

Annex D (informative):
Bibliography

· ETSI TR 101 917 (all parts): "Services and Protocols for Advanced Networks (SPAN); API mapping for Open Service Access".

· ETSI TS 123 127 : "Universal Mobile Telecommunications System (UMTS); Virtual Home Environment/Open Service Architecture (3GPP TS 23.127)".

· ETSI TS 122 127 : "Universal Mobile Telecommunications System (UMTS); Service Requirement for the Open Services Access (OSA); Stage 1 (3GPP TS 22.127)".

· ETSI TS 123 057: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Mobile Execution Environment (MExE); Functional description; Stage 2 (3GPP TS 23.057)".
· ETSI TS 123 078: "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 3 - Stage 2 (3GPP TS 23.078)".

· ETSI TS 129 198 : "Universal Mobile Telecommunications System (UMTS); Open Service Access (OSA); Application Programming Interface (API) (3GPP TS 29.198)".

History

	Document history

	V1.1.1
	February 2002
	Publication

	V1.2.1
	May 2002
	Membership Approval Procedure
MV 20020705: 2002-05-07 to 2002-07-05

	Draft V1.3.1
	June 2002
	

	
	
	

	
	
	

_1065948167.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of this version of the API

Telecom Network

Not in scope of this version of the API

2

6

Client

Application

Not in

 scope

of this API version

_1065009619.doc

