Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020609

Meeting #19, Montreal, CANADA, 8 – 12 July 2002
CR-Form-v5

CHANGE REQUEST

(

29.198-03
CR
CRNum
(

rev
-
(

Current version:
4.4.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

Add re-registration for an SCF to update property values

Source:
(

Koen Schilders (Koen.Schilders@eln.ericsson.se)

Work item code:
(

OSA2

Date: (

12/07/2002

Category:
(

F

Release: (

REL-5

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

In the backward compatibility white paper it is described that the backward compatible changes can be handled by one SCF instance. This CR describes how the SCF can indicate to the framework which version of the API it supports. It also allows the SCF to re-register after a restart.

Summary of change:
(

Allow the re-registration in method and STD. Describe its relation to backward compatible upgrades in the text.

Consequences if
(

not approved:
 Service instances cannot be upgraded to a newer backward compatible version. Only multiple instances of services can be used to support backward compatibility.

Clauses affected:
(

9.4

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Introduction

In the backward compatibility whitepaper it is described that the service can be upgraded to support a newer but backward compatible version of the service. The ‘upgrade’ mechanism is not indicated in that paper. This contribution gives a possible way to handle this upgrading.

Currently it is assumed that a Service Supplier registers and announces a service initially and when the service becomes unavailable the supplier unannounces and/or deregistes the service.

The proposal is to allow the service to re-register itself with a superset of the property values that were used in the previous registration. Most noteably, the ‘service version’ property (P_SERVICE_VERSION) should at the re-registration indicate to which API versions the newly registered service is compliant.

E.g., suppose a service registered P_SERVICE_VERSION with following set of values {“P_3GPP_4_3”, “P_ETSI_2_0”, “P_PARLAY_3_1”}.

Now the service is upgraded to support the next API version which is backward compatible. If this same instance is now supporting multiple versions it can re-register with the following set of values: {“P_3GPP_4_3”, “P_ETSI_2_0”, “P_PARLAY_3_1”, “P_3GPP_4_3_1”, “P_ETSI_2_0_1”, “P_PARLAY_3_1_1”}.

This means that clients that perform a discovery with a P_SERVICE_VERSION set to {“P_3GPP_3_1_1”} will be able to find this service and also clients searching with {“P_3GPP_3_1”} will succeed in discovering the same service.

Also other properties might be updated, e.g., the new methods supported after the upgrade should be added to the P_OPERATION_SET property value.

To accomplish this the following changes should be made:

The service should be allowed to re-register. Currently, re-registration of a service is implicitly forbidden. When a service would register again, a new serviceID would be allocated and the framework would view this as a different service.
However, to be able to allow the same service to upgrade to a newer API release we should allow the service to update its property values while keeping the same serviceID.

It should be possible for the service to enhance its capabilities. During registration the service informs the framework about its capabilities by providing values for the properties. These values can again be restricted while making profiles and service agreements for the service.
The upgraded service can contain more capabilities then the original service, specifically it can support more API versions.
The service should be able to inform the framework about the updated property values.
The upgraded service is ONLY allowed to register a superset of the previously registered property values, otherwise it could conflict with already created profiles or agreements (these should be a restriction of the both the old values and the newly registered value).

lifecycle

When an already registered SCF is updated to support a new version the following steps are taken:

· Optional. The service is announced unavailable.

· The service re-registers itself with the updated properties. The service version includes both the old and the new version.

· The framework checks whether all the properties are a superset of the already registered property values for the service.

· The framework returns the original serviceID if this condition is true. It will return a new serviceID in case the new values are not a superset.

· All already running service managers, already created profiles etc. are not influenced by the re-registration.

· The service announces its availability.

· An application looking for a service implementing the newer API release can now discover the service.

· Profiles and agreements can be created using the newly registered properties of the service.

· If an application already has signed an agreement for the service and wants to use the newly introduced methods etc., this is not immediately possible. To be able to use the new methods a new agreement should be made with the new features enabled and this agreement has to be signed. The old agreement is terminated.

Server crashes

Another reason for re-registration can be server crashes.

Currently it is assumed that a Service Supplier registers and announces a service initially and when the service becomes unavailable the supplier unannounces and/or deregistes the service.

However, in practice it can happen that a service capability server crashes. This can lead to loss of data; i.e., the service supplier does not remember the serviceID that was received from the framework during the initial registration procedure. Also, when the service restarts the service life-cycle manager reference may have been changed.

The simplest way for a service supplier to cope with these problems is to simply repeat the registration/announcement procedure. It does then not even have to distinguish between start and restart. This is also remedied in this proposal. In this case the re-registration will happen with exactly the same set of properties as before, but the same set is also considered a superset.

In case the service managers are not automatically restored by the service, the application will notice this fact and can re-sign the agreements, resulting in re-creation of the managers. The re-signing mechanism is described in another contribution.

Proposed Changes

The following changes are proposed to 29.198-03:

9.4 Interface Classes

9.4.1 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous clause enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

9.4.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.
When the SCS re-registers a service (e.g., in case of restart after a crash or in case of an upgrade of the service) the service-ID that is returned should be exactly the same as for the prior registration. In case of re-registration all the property values provided in the property list must be the same or a superset of the property values given during the prior registration of the service. If this is not the case then the registration is regarded to be a new registration and a new serviceID is allocated.
Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName
The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList
The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID
The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef
The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, P_INVALID_INTERFACE_TYPE
Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID
The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID
The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID
The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
9.4.1 Service Registration State Transition Diagrams
9.4.1.1 State Transition Diagrams for IpFwServiceRegistration

[image: image1.wmf]

SCF

Registered

registerService

SCF

Announced

describeService

unannounceService

announceServiceAvailability

unregisterService

Any State

registerService

Figure : State Transition Diagram for IpFwServiceRegistration

9.4.1.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework associates a service ID to this SCF, that will be used to identify it by both sides.
An SCF may be unregistered, the service ID then being no longer associated with the SCF.
After a crash or an upgrade of an SCS can re-register its SCFs. The IpFwServiceRegistration can be in any state and the state will be reset to the SCF Registered State. The services will become undiscoverable until the service is announced again.
9.4.1.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no longer available for discovery.
9.4.2 Service Instance Lifecycle Manager State Transition Diagrams
There are no State Transition Diagrams defined for Service Instance Lifecycle Manager
9.4.3 Service Discovery State Transition Diagrams
There are no State Transition Diagrams defined for Service Discovery
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1084902867.doc
[image: image1.wmf]

registerService

SCF

Registered

�

SCF

Announced

describeService

unannounceService

announceServiceAvailability

unregisterService

Any State

registerService

