3GPP TS aa.bbb vX.Y.Z (YYYY-MM)
CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020622

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Source:
Ericsson, Ard-Jan Moerdijk
Title:
Adding explicit indication on who’s behalf application will control the call

Agenda Item:
7.2.2 (Other Rel-5 Call control issues)
Document for:
Discussion
Category:

Work Item ID:
OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:

Specs involved:
ETSI ES 202 915-04-1, ETSI ES 202 915-04-3, 3GPP TS 29.198-04-1, 3GPP TS 29.198-04-3

Introduction.

In the Generic Call Control there is a datatype indicating for which party the notification is requested. Originally a similar datatype existed in the Multi-Party Call Control, but during the finalisation stages for Parlay 3 this datatype has been removed as it was believed that the eventtype inheritly contained the party for which the notification is requested. However, we believe this is not always the case and will illustrate this below. Furthermore, we outline there is an additional problem for the definition of overlapping criteria related to this. Finally we sketch some solutions.

How to indicate on who’s behalf the application will control the call ?

In IN call processing is described via so-called BCSMs: Basic Call State Models. The parent model of the BCSMs have been defined by ITU-T, e.g. for CS1 (Q.1214) and CS2 (Q.1224) and area specific adaptations have been defined, e.g. by ETSI. Two variants of BCSMs exist: Originating BCSMs (O-BSCM) and Terminating BCSMs (T-BCSM). The O-BCSM shows how call processing proceeds as seen from the originating side of the call session and the T-BCSM describes how call processing proceeds as seen from the terminating side of the call session. As an example, below the O-BCSM and T-BCSM from the Q.1224 are copied.

Figure 1: O-BCSM for ITU-T CS2

Figure 2: T-BCSM for ITU-T CS2

The distinction between Originating and Terminating is very relevant. As an example take the case that we want to intervene the call processing when it is detected that the called party is busy.

If it is the called party who wants the call to be redirected to his or her voice mailbox then we need to make sure that basic call processing is stopped when the T-BCSM “hits” the T_BUSY event and control over the call is handed over to a Service that directs the call session to the voice mail system of the called party

However, if the calling party wants to have the possibility to e.g. re-enter a new number, then when need to make sure that basic call processing is stopped when the O-BCSM “hits” the O_BUSY event and control over the call is handed over to a Service that allows the calling party to enter a new number.

Concluding, the O or T indicates on who’s behalf the call processing is proceeding and in relation on who’s behalf the corresponding service(s) are working.

The CallLeg State Models defined in Parlay/OSA are based on the BCSMs, but there is also a significant difference as we have choosen to model events that belong to the calling party on the Originating CallLeg and likewise events that belong to the called party always on what is called the Terminating CallLeg. The combined model then looks like:

This implies that for instance the O-ANSWER event is modelled in Parlay/OSA with the event P_CALL_EVENT_ANSWER on the Terminating CallLeg. This is perfectly alright, except for the fact that for some of the events it is not possible in MPCC to indicate whether the application is working on the originating side or the terminating side. Take for example again the P_CALL_EVENT_ANSWER, how can the application indicate that it is interested in gaining control over call processing on the originating side when this event occurs in the network ? With current API solution it would mean that some off-line agreement or negotiation is needed to setup the appropriate triggers in the network, ie either use the O_ANSWER or the T_ANSWER.

This was just an example and the following table indicates how the events are mapped to the BCSM detection points as defined in the Q.1224.

4.1.1.1 TpCallEventType

Defines a specific call event report type.
Name
Description
Related DP

P_CALL_EVENT_UNDEFINED
Undefined
N.A.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
An originating call attempt takes place (e.g. Off-hook event).
Originating_Attempt

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
An originating call attempt is authorised
Origination_Attempt_Authorized

P_CALL_EVENT_ADDRESS_COLLECTED
The destination address has been collected.
Collected_Information

P_CALL_EVENT_ADDRESS_ANALYSED
The destination address has been analysed
.Analysed_Information

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
Mid-call originating service code received.
O_Mid_Call (leg1),

T_Mid_Call (leg1)

P_CALL_EVENT_ORIGINATING_RELEASE
A originating call/call leg is released
O_Abandon,

T_Abandon

O_Disconnect (leg1),

T_Disconnect (leg1)

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
A terminating call attempt takes place
Termination_Attempt

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
A terminating call is authorized
Termination_Attempt_Authorized

P_CALL_EVENT_ALERTING
Call is alerting at the call party.
O_Term_Seized, Call-Accepted

P_CALL_EVENT_ANSWER
Call answered at address.
O_Answer, T_Answer

P_CALL_EVENT_TERMINATING_RELEASE
A terminating call leg has been released or the call could not be routed.
Route_Select_Failure,

O_Called_Party_Busy, O_No_Answer,

 O_Disconnect (leg2),

T_Busy,

T_No_Answer,

T_Disconnect (leg2)

P_CALL_EVENT_REDIRECTED
Call redirected to new address: an indication from the network that the call has been redirected to a new address (no events disarmed as a result of this).
N.A.

P_CALL_EVENT_TERMINATING_SERVICE_CODE
Mid call terminating service code received.
T_Mid_Call (leg2)
O_Mid_Call (leg2)

P_CALL_EVENT_QUEUED
The Call Event has been queued. (no events are disarmed as a result of this)
N.A.

From the table it is clear that currently there is some missing information in MPCC when the application creates a notification (with method createNotification) to indicate on who’s behalf the application is going to control the call. In GCC there is the data type TpCallNotificationType that can be used by the application for this purpose. This data-type was also present originally in MPCC, but was removed during the finalisation stage as it was believed that it was redundant information.

Conflicting overlapping criteria definition

The removal of the data-type has actually led to an additional problem and that is the description of overlapping criteria. In GCC it reads (see description of enableCallNotification):

“If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.”

while in MPCC it reads (see description of createNotification):

“If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used.”

From the latter description it is clear that the definition of overlapping criteria in MPCC is much more restrictive than the definition for GCC, because the NotificationType was removed also in this description. Overlapping criteria have been defined to prevent multiple points of control, leading to interaction problems. IN relies on the single point of control principle, but it is perfectly allowed to have one application controlling the terminating side and another application controlling the originating side for the same event in the network. This is because these events are processed in sequence, not parrallel, and thus there is actually only one application controllling the call at a time. Therefore the description for GCC is the correct one

Possible solutions

In order to fix the indicated problems there are apperently two alternatives:

1. Re-introduce the TpCallNotificationType or another way to explicitly indicate the party on who’s behalf the application will control the call.

or

2. Add additional eventTypes so that it is clear from the event on which side of the call it belongs.

Below the two solutions are evaluated
1. Explicit indication

An explicit indication could be achieved by reintroducing the NotificationType in data type TpCallNotificationScope in the way we had it in the TS29.198-V4.0.0 (06-2001):
TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element

Name
Sequence Element

Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or address range for which the notification is requested.

NotificationCallType
TpNotificationCallType
Defines wheter the notification is requested for a originating or terminating call.

TpNotificationCallType

Defines the type of call for which the notification is requested or reported.

Name
Value
Description

P_ORIGINATING
1
Indicates that the notification is related to the originating user in the call.

P_TERMINATING
2
Indicates that the notification is related to the terminating user in the call.

However, this leads to a non-backward compatible solution to the final 3GPP Rel.4 / ETSI OSA 2 and Parlay 3 specs.

An alternative would be to add an indication in the TpCallMonitorMode:
4.2 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_CALL_MONITOR_MODE_INTERRUPT
0
The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY
1
The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

P_CALL_MONITOR_MODE_INTERRUPT_ON_ORIGINATING_SIDE
3
The call event is intercepted by the call control service on behalf of the originating call party and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY_ON_ORIGINATING_SIDE
4
The call event is detected by the call control service on behalf of the originating call party but not intercepted. The application is notified of the event and call processing continues

P_CALL_MONITOR_MODE_INTERRUPT_ON_TERMINATING_SIDE
5
The call event is intercepted by the call control service on behalf of the terminating call party and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY_ON_TERMINATING_SIDE
6
The call event is detected by the call control service on behalf of the terminating call party but not intercepted. The application is notified of the event and call processing continues

For generic call control only the first three values should be used during enabling and changing the call notifications. For other values a P_INVALID_CRITERIA exception is thrown.

For multi-party call control only the last five values should be used during creating and changing notifications. For other values a P_INVALID_CRITERIA exception will be thrown.

For both services, when requesting dynamic events (e.g., in eventReportReq) all values may be used, but the side on whose behalf the event is detected is ignored. Therefore, it is suggested that the application only uses the first three values. In the corresponding reports only the first three values are used.

The P_INVALID_CRITERIA exception is used, if the side on whose behalf the request is done does not match the eventType, e.g., P_CALL_MONITOR_MODE_INTERRUPT_ON_TERMINATING_SIDE with P_CALL_EVENT_ADDRESS_ANALYSED.

2. Adding additional eventTypes

This would lead to:

4.2.1.1 TpCallEventType

Defines a specific call event report type.

Name
Value
Description

P_CALL_EVENT_UNDEFINED
0
Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
1
An originating call attempt takes place (e.g. Off-hook event).

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
2
An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_COLLECTED
3
The destination address has been collected.

P_CALL_EVENT_ADDRESS_ANALYSED
4
The destination address has been analysed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
5
Mid-call originating service code received.

P_CALL_EVENT_ORIGINATING_RELEASE
6
A originating call/call leg is released

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
7
A terminating call attempt takes place

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
8
A terminating call is authorized

P_CALL_EVENT_ALERTING
9
Call is alerting at the call party.

P_CALL_EVENT_ANSWER
10
Call answered at address.

P_CALL_EVENT_TERMINATING_RELEASE
11
A terminating call leg has been released or the call could not be routed.

P_CALL_EVENT_REDIRECTED
12
Call redirected to new address: an indication from the network that the call has been redirected to a new address (no events disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE
13
Mid call terminating service code received.

P_CALL_EVENT_QUEUED
14
The Call Event has been queued. (no events are disarmed as a result of this)

P_CALL_EVENT_ORIGINATING_RELEASE_ON_TERMINATING_SIDE
15
A originating call/call leg is released as seen from the terminating side of the call.

P_CALL_EVENT_ALERTING_ON_ORIGINATING_SIDE
16
Call is alerting at the call party as seen from the originating side of the call

P_CALL_EVENT_ANSWER_ON_ORIGINATING_SIDE
17
Call answered at address as seen from the originating side of the call

P_CALL_EVENT_TERMINATING_RELEASE_ON_ORIGINATING_SIDE
18
A terminating call leg has been released or the call could not be routed as seen from the originating side of the call.

3. Adding an notificationType to create and change notification

Since the notification type is mainly interesting when creating or changing the notifications, these methods could be replaced by new methods that do allow the notificationType to be specified.

This can be accomplished by just adding the notificationType parameter to these methods (as shown below).

Alternatively, a new type TpCallNotificationRequestWithType could replace the TpCallNotificationRequest type. This means that all datatypes where the notificationtype would be interesting would be replaced by new types and all methods using any of these types should be replaced by new methods.

However, we assume that the application does not need to know the notificationType of received triggers (in reportNotification), since the application can use the contained assignmentID to correlate this to the trigger set for the trigger. We also assume that it is sufficient to set either originating or terminating triggers in one create/changeNotification. Given these assumptions, the modifications described below should be sufficient.
4.2.2 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. The action table associated with the STD shows in what state the IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.
<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

<< deprecated>> createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID
createNotificationWithNotificationType (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest, notificationType : in TpCallNotificationType) : TpAssignmentID
destroyNotification (assignmentID : in TpAssignmentID) : void

<< deprecated>> changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void
changeNotificationWithNotificationType (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest, notificationType : in TpCallNotificationType) : void
getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method

createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef
Specifies the application interface for callbacks from the call created.
Returns

TpMultiPartyCallIdentifier
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification(). In case the application is interested in other events during the context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the eventReportReq() method on the call leg object. The application will get access to the call object when it receives the reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap, the same number plan is used and the notificationTypes are the same.
If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
notificationRequest : in TpCallNotificationRequest
Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
notificationType : in TpCallNotificationType
Specifies whether the notifications are requested on behalf of the originating or the terminating party.

Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
Method

destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID
Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of them will be disabled.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
Method

changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID
Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have been registered under this assignment ID both of them will be changed.
notificationRequest : in TpCallNotificationRequest
Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
notificationType : in TpCallNotificationType
Specifies whether the notifications are requested on behalf of the originating or the terminating party.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
Conclusion

In order to keep the similarity between GCC and MPCC we have a slight preference for having an explicit indication of the side of the call the application is controlling. As this indication is also only useful when requesting notifications with createNotification, it seems also more appropriate to have this indication visible to applications at this stage and not when requesting (dynamic) events with eventReportReq.

Re-introducing the NotificationCallType violates backward compability and therefore our proposed solution is to extent the TpCallMonitorMode in the way outlined above.

Accompanying CRs are included in the zip file containing this document.
Originating

CallLeg

Terminating

CallLeg

Originating

CallLeg

Terminating

CallLeg

O-BCSM

T-BCSM

Originating Side

Terminating Side

_966412430.unknown

_966412429.unknown

