
Discovery and Backwards Compatibility

Andy Bennett (andybennett@lucent.com)

Executive Summary

The intention of this document is to explain capabilities of the Parlay/OSA Framework that relate to and support service backwards compatibility and version migration.

Discovery via the Framework allows a Client Application to select the service which supports a compatible version of the APIs.

Event Notification allows the Client Application to be informed of new versions of a service supporting new, or even previous versions of the APIs.

There are a number of limitations on this functionality which may require the specifications to be updated.

Discovery-related capabilities

Service Properties

When Services are registered with the Parlay Framework a set of property values are populated by the Service Supplier which describe that Service. A number of standard properties have been defined which form the basis of all property lists for all Services and one of these is the version of the Service API supported (Service Version).

The Parlay Framework supports a Service Discovery interface which allows a Client Application to obtain a list of Services which have property values that match its desired criteria. Since one of the properties is Service Version this allows a Client Application to discover Services which support the version of the APIs that it needs.

The Framework also has a further standard property available for use called Operation Set which allows the Client Application to determine which interfaces and methods a Service supports.

Event Notification

An Event is defined (P_EVENT_FW_ SERVICE_AVAILABLE ) for the Framework which allow Client Applications to be informed when Services of a particular Service Type are made available (registered and announced). This allows the Client Application to find out when a new version of a particular Service becomes available. A counterpart method (P_EVENT_FW_ SERVICE_UNAVAILABLE) is also defined which indicates that a service is now unavailable.

Scenarios

The two scenarios below are intended to illustrate how the Discovery and Event Notification capabilities are used by a Client Application to select a service supporting its desired API.

Client Application discovers a Service supporting its desired version

Two versions of a Service are registered with the Framework. The Client Application uses Discovery to obtain the version it needs.

[image: image1.wmf] : 

IpFwServiceRegistration

Service 

Supplier

 : 

IpServiceDiscovery

Client 

Application

1: registerService(in TpServiceTypeName, in TpServicePropertyList)

2: announceServiceAvailability(in TpServiceID, in service_lifecycle::IpServiceInstanceLifecycleManagerRef)

5: discoverService(in TpServiceTypeName, in TpServicePropertyList, in TpInt32)

Service Version = 3.0

Desired Service 

Version = 3.1

Service Version = 3.1

New Service ID = 657 

created by Framework

3: registerService(in TpServiceTypeName, in TpServicePropertyList)

New Service ID = 699 

created by Framework

4: announceServiceAvailability(in TpServiceID, in service_lifecycle::IpServiceInstanceLifecycleManagerRef)

Service ID 699 

returned by the 

Framework


Client Application switches from one version of a Service to another

A new version of a Service is registered with the Framework and the Client Application is informed of this (having previously created the appropriate Framework notification). It does a discovery again and finds the new Service.

Note that rather than using registering for notifications the Client may choose to perform Discovery at regular intervals or may rely on off-line (non-Parlay API) input.

[image: image2.wmf] : 

IpFwServiceRegistration

Service 

Supplier

 : 

IpEventNotification

 : 

IpServiceDiscovery

Client 

Application

Service Version = 4.0

New Service ID = 900 

created by 

Framework

2: registerService(in TpServiceTypeName, in TpServicePropertyList)

3: announceServiceAvailability(in TpServiceID, in service_lifecycle::IpServiceInstanceLifecycleManagerRef)

4: reportNotification

1: createNotification

5: discoverService(in TpServiceTypeName, in TpServicePropertyList, in TpInt32)

Service ID 900 

returned by the 

Framework

Desired Service 

Version = 4.0


When it signs the Service Agreement to start using the new Service it will receive a reference to a Service Manager supporting the new version of the interfaces and will need to provide an app-side interface which also supports the new version.

The Client Application must decide how best to migrate its functionality from the previous version to the new version. For example it may invoke all new operations on the new Service Manager and cancel existing operations (particularly any long-lived asynchronous ones), re-creating them on the new Service Manager.

Observations

Below are a number of limitations of the current specification and possible enhancements that may be made.

1. Using the current set of service properties there is no means for the Client to select a service based on which Application-side interfaces the service supports. This means that if a Client discovers a Service based on Service Version the version of the app-side interfaces that the service supports are the same. A new service property would allow the service and application-side APIs to be at different version levels.

2. The definition of the syntax of Service Version needs to be enhanced such that it is possible to indicate the version number and the publishing body (3GPP, ETSI, Parlay …).

3. The property limits the granularity of version-based discovery to the Service level and thus all interfaces defined to be part of that Service must be at the same version level.

4. Version-based discovery is limited to discovery of Services and cannot be used for the Framework.

5. The Operation Set property semantics need to be better defined since at present it is not clearly stated what minimum set of operation functionality must be implemented by the service in order to claim support.

6. A better definition is needed for how matching of desired and registered properties occurs. For example, if the desired version is 3.1 and the registered version is 3.0, does this generate a match or must the registered version be exactly 3.1?

2
1

