1

Temporary document N5-020423
Joint 3GPP TSG_CN5-#18/ ETSI SPAN 12
13th through 17th of May 2002
Budapest, Hungary

Source:
Incomit

Title:
Frame Work version in run-time

Date:

13th of May 2002

Document for:
Decision
Agenda item:
Backward Compatibility

1 Introduction

Note that the use of “OSA” in the following text can be replaced by “Parlay”.

The backward compatibility of the OSA/Parlay API usage has two components. The first component is the selection of the Service Capability Services (SCSs) based on the Service Name and Service Version. This is already specified as General Properties for all SCSs in the Framework specification. However before an application can select a SCS using the Framework the application has to communicate with a set of OSA/Parlay Framework Interfaces. In the current version of the specification OSA Rel 4.3 and Parlay 3.0 there is no way that the API between the framework and the applications can handle backward compatibility.

The main reason for this is that the Application can’t inform the Framework of its own Framework version. This will in the end require that no API changes can be done to the Framework in the future releases to be able to be handle backward capability.

This Contribution contains a backward compatible solution to the OSA/Parlay Framework API that enables the communication between a framework and different versions of applications to work even if the framework has been changed.

2 Changes done in the IpInitial API

The first access between an application and the OSA/Parlay framework will always be done via the IpInitial framework interface. In this interface the application selects the it’s proposed security mechanism with call-back references to the authentication objects in the application.

The proposed changes in this contribution add a new method to the IpInitial interface called initiateAutenticationV3plus. This method is a copy of the initiateAuthentication method but containing one more in parameter frameworkVersion containing the application framework version in a STRING type.

The implementation of the IpInitial must verify that the implementation can work as the proposed version. If that is not possible an exception shall be returned to the application informing it about the incapability. A well-implemented framework will therefore be required to handle all versions from the OSA release 4.3 and Parlay version 3.1 and forward, including the current version. Meaning that there shall be implementations of each Framework version that the IpInitial may use to handle the different application versions during their communication with the framework. How this is done is an implementation requirement.

The proposed changes of the API is described below in the extract from the specification.

Summary

Allowing different versions of OSA/Parlay will enable a framework to work with any version of an application later than the current Parlay release 3.0 and OSA version 4.3, to enable back-ward compatibility of applications running against a framework.

Adding a new backward compatible method in the IpInitial class solves this problem. This new method handles how an application determines the version and calls and returns the proper interfaces.

	

	

	

Extract from specification

	

	

	

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpFrameworkVersion) : TpAuthDomain

Method

initiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distibution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions,P_INVALID_DOMAIN_ID,P_INVALID_INTERFACE_TYPE,P_INVALID_AUTH_TYPE
InitiateAuthenticationWithVersion()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework can’t work with the proposed framework version the framework returns an error code (P_INVALID_FRAMEWORK_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distibution technology authentication mechanism is used.

FrameworkVersion : in TpFrameworkVersion

This identifies the version of the Framework implemented in the client. The TpFrameworkVersion is a String containing the version number. Valid version numbers are defined in the TpFrameworkVersion data type.
Returns

TpAuthDomain

Raises

TpCommonExceptions,P_INVALID_DOMAIN_ID,P_INVALID_INTERFACE_TYPE,P_INVALID_AUTH_TYPE, P_INVALID_FRAMEWORK_VERSION
10.5.33 TpFrameworkVersion

This data type is identical to TpString. It uniquely identifies the version of the framework implemented in the calling application. Existing versions:

	3GPP OSA Version
	Parlay Version
	ETSI OSA Version
	String

	Rel 1
	-
	-
	P_FW_V1_0

	-
	2.1.1
	-
	P_FW_V2_1

	Rel 4.1
	3.0
	1.0
	P_FW_V3_0

	Rel 4.2
	-
	-
	P_FW_V3_0_1

	Rel 4.3
	3.1
	1.1
	P_FW_V3_1

	Rel 5
	4.0
	2.0
	P_FW_V4_0

[image: image1.wmf]

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterfa

ce()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

reques

tAccess()

(from Framework interfaces)

<<Interface>>

initiateAuthenticationWithVerCtrl()

<<deprecated>> initiateAuthentication()

<<new>>initiateAuthenticationWithVersion()

Figure: Trust and Security Management Package Overview

[image: image2.wmf]

IpClientAccess

terminateAccess()

(fr

om Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallbac...

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

authenticate()

abort

Authentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceede...

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

initiateAuthenticationWithVerCtrl()

<<deprecated>> initiateAuthentication()

<<new>>initiateAuthenticationWithVersion()

Figure: Trust and Security Management Package Overview
11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_APPLICATION_NOT_ACTIVATED
	An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

	P_DUPLICATE_PROPERTY_NAME
	A dupilcate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_FRAMEWORK_VERSION
	This exception states that the Framework version implemented/used by the Client is not supported by the Framework

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	An encryption mechanism, which is acceptable to the framework, is not supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_UNKNOWN_SERVICE_ID
	Unknown Service ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

	* Contact:
	Anders Lundqvist
	(+46-54-176703 / * anders.lundqvist@incomit.com

C:\WINNT\Profiles\anlu.KSD\Desktop\N5-020287.doc

_1074677847.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

initiateAuthenticationWithVerCtrl()

_1074677896.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf]

initiateAuthenticationWithVerCtrl()

<<Interface>>

(from Framework interfaces)

initiateAuthentication()

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallbac...

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceede...

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

IpInitial

