Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020467

Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-3
	CR
	
	(

rev
	-
	(

Current version:
	4.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Adding version management support to the Framework in run-time

	
	

	Source:
(

	Incomit AB (Anders Lundqvist)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	17/05/2002

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Need for support of multiple framework versions by a single instance to be able to handle backward compatibility

	
	

	Summary of change:
(

	Adding support to the application to state it’s implemented version in the IpInitial interface, the Framework implementation shall now adopt to work according to that version or return an exception if the chosen version is not supported.

	
	

	Consequences if
(

not approved:
	The version handling must then be handled by the chosen implementation, e.g. CORBA/IDL. This results in that different technologies will work differently reagarding this issue.

A second reason is to make it easy for both the network operators as well as the third-party developers to handle backward compatibility in the Framework access.

	
	

	Clauses affected:
(

	6.2, 6.3.1.3, 7.2

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.2 Class Diagrams

[image: image1.wmf]IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

...

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

...

authenticate()

abortAuthentication()

authenticationSucceeded()

...

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

Method

initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of this specification.

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distibution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions,P_INVALID_DOMAIN_ID,P_INVALID_INTERFACE_TYPE,P_INVALID_AUTH_TYPE
initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework can’t work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions,P_INVALID_DOMAIN_ID,P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE, P_INVALID_VERSION
7.2 Class Diagrams

[image: image2.wmf]IpAppEventNotification

reportNotification()

notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram
[image: image3.wmf]IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

fwUnavailableInd()

activityTestErr()

genFaultStatsRecordErr()

...

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

genFaultStatsRecordReq()

appActivityTestErr()

appUnavailableInd()

...

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

queryAppLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

...

<<Interface>>

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

...

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image4.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image5.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image6.wmf]IpAppServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

selectService()

initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview
initiateAuthenticationWithVersion()

initiateAuthenticationWithVersion()

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

