joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020445

Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

1To: Parlay Board and TAC

From: The Joint Working Group

1. Introduction

During our meeting in Sophia Antipolis, on April 8-12 the Joint API Group discussed the issue of Backwards Compatibility (BC) for Parlay specifications. Gary Bruce gave the Joint API Group a summary of the recent Parlay activities on the subject, and then the following input was discussed:

- Backwards Compatibility in Parlay/OSA White Paper, from the Parlay TAC

(N5-020281)

- Specification Maturity slides, from Martin Cookson (N5-020288)

- Framework version in run-time document, from Incomit (N5-020287)

- View Ericsson on backward compatibility in Parlay/OSA slides, from

Ericsson (N5-020262)

All these documents can be found in

ftp://ftp.3gpp.org/tsg_cn/WG5_osa/TSGN5_17_Sophia/Docs/, numbered as indicated in brackets above.

2. Detailed comments

As a result of the discussion of the input documents and a subsequent drafting session, the Joint API group has the following feedback regarding Backward Compatibility.

1. The way we manage our documentation today, the UML and the IDL are tightly coupled and don't have separate lives, so there is no way we can implement the separation between their BC levels without breaking that coupling. Breaking the coupling would mean there is no longer any need to maintain the Rational Rose UML model. This would be to our disadvantage, because today we compile the IDL as a means to check the specification, and we wouldn't be able to do this anymore.
I propose that the UML and IDL should continue to be linked and therefore view the BC level the same for both.
2. Comment on the proposed way to track changes in the specification: if we use for the interfaces a stereotype that is not "interface", then we won't be able to generate IDL automatically. An alternative solution would be to put the changes in an annex.

I propose that we only deprecate methods and not the Interfaces. Therefor I believe there may need to be a change made to the White Paper?
The following two issues (Issues 3 and 4) can be summarized by “A process regarding Backward Compatibility is needed regarding how long we maintain BC between releases and how to apply BC when new IFs or methods have been added to a Service that has been on a high BC level.”

3. We need to address how long we maintain BC between releases. If we do

a level 3 fix to correct a key bug, do we keep the wrong part of the API forever? Or do we allow ourselves new versions, dumping the wrong parts, every now and then? In Java, for example, a corrected method stays for three years, when it finally disappears from the specification. This is related to the process, as in the following issue.

I propose that we keep the wrong (deprecated) part for one release in Parlay and one release in ETSI. (not sure if this will apply to 3GPP)
4. If we add a new interface or method, does BC apply to it immediately, even though it has not been implemented? A process needs to be defined, and the maturity level will be defined with granularity at interface level (though more study is needed on that) - see the case of the Terminal Capabilities SCF (it has been stable for a long time; then recently we have added functionality for Rel5, and now the part that was stable is a very small proportion of the whole of the functionality for this SCF). More study is also necessary on the definitions of maturity and completeness, and more detail needs to be added. I propose that as in the case of Terminal Capabilities, a note be added up front in the document, making the reader aware of the change. This would show an enhancement to the Interface and not changes due to errors or deprecation. This would be a level 3 change. I also propose that we do not have a finer granular level of BC for each Interface, as this would only cause confusion rather than clarification.
5. Perhaps we need to distinguish two "levels" of non BC: 3 (essential bug fixes) and 4 (resulting from specific requirements)? (In case we do potentially another dimension is needed than the currently defined levels) We need a statement about how we handle changes, so that they're always as much BC as possible (e.g. introducing a new method if a change in a parameter is needed). It would be basically a split between "acceptable" and "non-acceptable" changes, for each level. The Parlay BC

WP, section 8, already lists what is allowed and what not for the IDL, per level. It is only applicable to the IDL. For the other technologies the sections are empty for the moment. This only covers up to level 2 and we need to go beyond: write, for each level, which changes are allowed and which are not, and what are the implications for the applications in each case. This is an alternative way to write the "Rules" clauses in the white paper (clauses 7, 8, 9 and 10). And it is also change of philosophy: we don't talk about BC levels but rather about what is allowed and what is the "level of pain" for the application. Firstly I propose we adopt the concept of ‘two levels’ of incompatibility i.e. level 3 and level 4. Level 3 could allow addition of extra methods and also deprecation of existing methods where necessary. Level 4 could mean that exhaustive changes may be made, which would completely modify the existing interface.

I also propose that the JWG be responsible for defining the levels of pain associated with each change.
6. Can we do any level 0 or level 1 technical changes at all for the IDL?

It seems they can only be editorial. And even textual changes or clarifications could be technical, because they might be against somebody's interpretation of the semantics of the interface. What we mean by textual changes should be defined, how about the following:

- Textual changes are those changes that don't change the syntax or semantics of the interface.

We need to be aware that the state diagrams may also be part of the semantics of the interface. I propose we agree with the statement made in the above bullet item.
7. Do we in fact need to consider BC at all? We already have a mechanism in the Fw to handle different versions of SCF’s; and for the case where different versions of the Fw interfaces may exist, this is being considered independently.

This issue resulted into two independent discussion threads:

- Andy will provide the Parlay BoD a summary of the existing Fw mechanism

for handling SCF versions, using input from Ard-Jan's Cancun contribution, so that the above question can be considered.

- For the Fw interfaces, Koen and Andy to discuss off-line with Anders and

bring a proposed conclusion to the Joint API Group.

This raises two additional questions, namely:

-Each time there is a new Parlay Release, is there any point in producing new versions of SCF,s that remain unchanged? In other words, shouldn’t we have independent Main Release numbering and SCF numbering. A Main Release could then just be a collection of pointers to different SCF versions.
In the light of the fact that I have not seen the doc from Andy to the board (this does not imply it has not been written), then I would leave this decission to the JWG to propose a statement to the board, which we should adopt.
Will applications be able to find new versions of an SCF at all through the Fw, when looking for the old one using the version service properties? It might be that the new SCS registers itself as only the new version and from the FW specification it is not clear whether the application is able to find it using a pointer to a previous version.

We discussed these points in detail which resulted in a choice regarding the Release handling between the following two options:

· Each spec has its own life, and contains no Parlay release number; Parlay maintains a table of Parlay releases vs spec number (same spec number could occur in two Parlay releases), I propose we adopt this choice.
· Or - there is a Parlay number in each ETSI spec, which gets re-published with a new spec revision number with each Parlay release (potentially multiple identical specs with different revision numbers are possible).

