joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020346

Meeting #18, Budapest, HUNGARY, 13 – 17 May 2002

Source:
ftw (Joachim Zeiss)
Title:
A CCM friendly UML to IDL mapping

Agenda Item:

Document for:
Discussion
Category:

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:

Specs involved:
ETSI ES 201 915-13, 3GPP TS 29.198-13

Introduction

This document is meant to serve as an outline for further investigations and discussions amongst the Parlay members on the definition of a CCM model representing the Parlay APIs.

After mentioning some of the important benefits about the component representation of Parlay APIs, and a short introduction to CCM two different solutions on how Parlay components could be modelled are given. Section 3 talks about the basic approach to component modelling whereas section 4 tries to give an extended solution for turning Parlay APIs into CORBA components.

These two concepts are not considered to be a final version which is to be agreed on. They rather try to give some general ideas based on which other solutions could be developed and agreed upon.

1
Benefits of modelling Parlay APIs as CCM components

Now that CCM components have been adopted by the OMG board for the CORBA 3.0 specification, Parlay APIs could take advantage of the new possibilities offered by this architecture. Additions to the current UML to IDL mapping of the Parlay APIs could specify a component oriented modelling of this interfaces (in IDL extensions and CIDL files).

The modelling of Parlay interfaces as CCM components would bring the following benefits to the Parlay service design:

· If components are published rather than plain interfaces the time to market of developing Parlay services could be further reduced.

· Designers used to component oriented programming, as offered by EJB, could be attracted to develop parlay clients and services

· The architectural linkage between service invocations and client callbacks will be clearly stated in the interface definition (i.e. the definition of a Parlay component).

· The implicit availability of CORBA services like persistence, security levels or notification due to the standardized usage of a CCM component container

· The setting up of interactions between client-service, client-framework or service-framework could be configured using the CCM deployment specification

· The cardinality of objects/components could be defined by standard if desired

2
Abstract view on Parlay and CCM

2.1
The CCM model

To get a general idea on how Parlay APIs could be represented as CORBA components the concept of CCM ports should be discussed first. Figure 1 below outlines the structure of a component and how it interacts with the outside world.

[image: image1.png]
Figure 1: CCM component interfaces

The various stubs and skeletons of a component as shown in figure 1 above are referred to as ports. Four types are of special interest:

· Facets are interfaces (skeletons) that a component provides to its clients

· Receptacles are client stubs that a component uses to invoke methods on other remote objects

· Event sources are named connection points that emit typed events to consumer(s) or an event channel

· Event sinks are named connection points to which a typed event will be pushed by a supplier or event channel

Furthermore, Attributes can be defined as named values exposed through accessors and mutators, Primary keys can be used to retrieve persistent components and finally so called Component homes provide standard factory and finder patterns.

2.2
Adopting the model to the Parlay APIs

For mapping the Parlay APIs architecture onto the CCM component model definition following topics need to be considered:

1. The logical content, lifecycle and cardinality of a Parlay Component

2. The representation of Parlay service interfaces

3. The representation of Parlay client call backs

4. The representation of Parlay events and notifications

5. The means of obtaining Parlay Components in analogy of obtaining Parlay interfaces

Regarding topic (1): Generally, the Parlay intrinsic system of complementary interfaces between client and service for a given package should be represented by a single component for each aspect. Additionally, appropriate lifecycle information could be provided for a particular component, e.g. should the component be persistent or not, should it exist only once per server or once per request or should it be retrievable via a primary key which could be a related domain ID.

Regarding topics (2) and (3): We generally suggest that, Parlay components will be modelled from service side perspective, i.e. interfaces offered to the client will be facets, interfaces expected by the service to be called on the client will be receptacles.

Regarding topic (4): As an extended adaptation of CCM all Parlay interfaces which are meant to represent an event or notification source or sink could be represented as an event publisher or event consumer in the sense of CCM (see section 4).

Regarding topic (5): Following possibilities arise:

· Component homes distributed to clients will be used to obtain the related interface: A client will use create or find methods to retrieve an interface reference. In analogy of the current use of method obtainInterface(“P_Name”) called on an access object of the framework there would exist a method like obtainComponentHome(“P_Component”) that would return a reference to the home of a component identified by “P_Component”. Transient components would be retrieved by calling the create method on the home; persistent components would be retrieved by calling the finder method on the home passing the components primary key.

· The component homes are accessible to the server only. A method called obtainComponent(“P_Component”) would then ask the home of the component to provide a reference to be forwarded to the client.

· Note that a method like obtainComponentWithCallback(…) would not be necessary as the callbacks, now represented as receptacles, can be set via standardized methods on the component itself.

3
Basic CCM adaptations

The following section provides rules and examples on a basic CCM adaptation of the Parlay APIs. The advantage of the suggestions given here is a minor impact on existing interface definitions while, however, not making use of all CCM features that could have been applied.

3.1
Mapping rules

From section 2.2 above only topics (1), (2) and (3) apply. Topic (4) regarding events and notifications has a deep impact on existing interface definition and, therefore, has not been considered for the basic adaptation.

Regarding topic (5) from above, only the option of the second bullet will be considered here, again to minimize impact on existing architectural structure. However, the usage of the factory/finder pattern known very well to EJB designer could give a strong momentum to integrating Parlay services into IT solutions.

Following is an example of a component definition for the Authentication interfaces of the framework.

Given the IDL3 definition:

component AppAuthentication {

provides IpAPILevelAuthentication fw_authentication; // the facet

uses IpClientAPILevelAuthentication app_authentication // the receptacle
};

home AppAuthenticationHome manages AppAuthentication {}; // factory/finder
The related CIDL could then look like:

composition session AppAuthenticationComposition {

home executor AppAuthenticationHomeBase {

implements AppAuthenticationHome;

manages AppAuthenticationBase;

};

};

For other packages the combination of many interfaces could be more feasible as the following IDL3 definition of the heartbeat functionality shows:

component AppHeartBeat {

provides IpHeartBeatMgmt fw_heartbeat_mgmt; // called on framework by app

provides IpHeartBeat fw_heartbeat; // called on framework by app

uses IpAppHeartBeatMgmt app_heartbeat_mgmt; // called on app by framework

uses IpAppHeartBeat app_heartbeat; // called on app by framework

};

home AppHeartBeatHome manages AppHeartBeat {}; // creates AppHeartBeat component

and the CIDL:

composition session AppHeartBeatComposition {

home executor AppHeartBeatHomeBase {

implements AppHeartBeatHome;

manages AppHeartBeatBase;

};

};

3.2
UML extensions

Existing interfaces would be kept and usage of Parlay components will remain optional. Only small changes regarding component retrieval are expected on the access interfaces of the framework.

4
Extended CCM adaptations

This section offers a Parlay API to CCM mapping which takes advantage of the full feature set of CORBA components, which would however require significant interface definition changes to existing API definitions.

4.1 Mapping rules

For the extended CCM adaptation all topics (1) to (5) from section 2.2 above apply, especially the usage of the CCM event and notification ports. Regarding topic (5) the solution under the first bullet could be used. As mentioned before this would be in accordance to well known EJB strategies.

Additionally, component attributes as introduced in section 2.1 could be very usefull for component configuration or parameters required by all interfaces of that component like setting the preferred authentication method, the clients domain ID, a service ID etc.

Moreover, different lifetime scenarios of Parlay components (service, session, process or entity) could be specified.

The component definition fragments of section 3 on basic adaptation are extended below to give an idea on how the full set of CCM components could be used.

The IDL3 AppAuthentication definition:

component AppAuthentication {

readonly attribute TpAuthDomain fw_authentication_info;

attribute TpDomainID appID;

provides IpAPILevelAuthentication fw_authentication; // the facet

uses IpClientAPILevelAuthentication app_authentication // the receptacle
};

home AppAuthenticationHome manages AppAuthentication {}; // factory/finder
and the CIDL:

composition session AppAuthenticationComposition {

home executor AppAuthenticationHomeBase {

implements AppAuthenticationHome;

manages AppAuthenticationBase;

};

};

Another example would be a completely different representation of the IpEventNotification-IpAppEventNotification or IpFwEventNotification-IpSvcEventNotification pairs. Hereby, methods createNotification()/destroyNotification() would be replaced by the component inherent method calls for connecting/disconnecting an event consumer and reportNotification(…) would be replaced by the related push(…) method at the client side.

4.2
UML extensions

Significant changes to existing or a complete side stream of the Parlay API definitions would be required.

_1082189523.bin

