
	3GPP TSG CN WG5
	Document
	

	
	
	e.g. for 3GPP use the format  TP-99xxx 

or for SMG, use the format  P-99-xxx

	
	
	


	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-3
	CR
	
	(

rev
	-
	(

Current version:
	4.4.0
	(


	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Security of terminateAccess() function

	
	

	Source:
(

	Alcatel

	
	

	Work item code:
(

	OSA1
	
	Date: (

	06-04-02

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-4

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Issue#1: no indication of public key/certificate to be used by verifier

The framework does not indicate which public key/certificate the client must use to verify the signature. The assumption to be made in the current specification is that the client and the framework have some a-priori agreement in which the client obtains a copy of the public key (embedded in a certificate or not) used by the framework for signing.

However, such a solution is not scalable and indication of the public key used is particularly important as the framework may have several (private/public) key pairs so that the client knows which one to use. The certificate itself is also important as a basis for signature verification (so as to validate the public key itself first). 

Issue#2: no anti-replay protection

As currently specified, the signature is calculated solely over the terminationText string. Because such a string is more of a constant nature (same string is used on many occasions), no mechanism is defined to prevent re-use of a digital signature by a third-party. 

Issue#3: no negotiation of signature algorithm

The signature algorithm used by the framework is not negotiated as it is a parameter of the terminateAccess(0 function itself. There is therefore no way for the client application to indicate which algorithm(s) it supports and it must consequently merely accept what it receives. If the signing algorithm is not supported, the client cannot verify the signature and an exception will be generated but the effect will most probably be that the association with the framework will be considered closed by the client itself. If the latter is the case, the lack of a priori agreement also opens the door to denial of service: an attacker can issue a terminateAccess() to the client with a signature algorithm that it knows is not supported by the client. In such a scenario, the signature value does not have to be valid since the client will not try and verify it.

Issue#4: specification of signature algorithm

The list of signature algorithms is provided in table TpSigningAlgorithm, which lists P_MD5_RSA_512 and P_MD5_RSA_1024 as possible algorithms. Such a reference to the use of MD5 with RSA for signing is not sufficient to determine what the exact mechanism to implement is. Moreover, the use of MD5 as hashing algorithm and especially a modulus of 512 bits for RSA are not advisable and are deprecated.

	
	

	Summary of change:
(

	With regards to issue #1, the solution is to have the digitalSignature field carrying the certificate. This is achieved by using an appropriate digital signature format : the one defined in Cryptographic Message Syntax (RFC 2630). CMS indeed defines a data structure to carry a digital signature, the signed data and the signer’s certificate.

With regards to issue #2, a fresh value must be generated by the framework for use as input into the signing algorithm. CMS already contains a field to contain the signing time. The signing time can be used by both parties to detect replayed signatures, under the condition that the verifier keeps track of the last verified value.

A separate contribution discusses a proposed mechanism for the negotiation of the signature algorithm (issue #3).

With regards to issue #4, the list of algorithms is more precisely defined and can also be extended to other signing algorithms. Such a list of possible algorithms is given in IETF draft draft-ietf-pkix-ipki-pkalgs-05.txt, which itself refers to RFC 2437 specifying in detail RSA-based signing mechanism, to FIPS-186 for DSA signing mechanism and X9.62 for ECDSA signing mechanism.

	
	

	Consequences if 
(

not approved:
	Security weaknesses in terminateAccess() function and insufficient details for correct interoperable implementations.

	
	

	Clauses affected:
(

	6.3.1.2, 10.3.11

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	


6.3.1.2 Interface Class IpClientAccess 

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session.  

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void




Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.  If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,  the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client.  This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it. 

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (ie the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.
The framework uses this to confirm its identity to the client.  The client can check that the terminationText has been signed by the framework.  If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit modulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_ RSASSA-PKCS1-v1_5_SHA1_1024
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to generate the  signature value, following the process defined in section 8  of RFC 2437 and format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

	P_SHA1_DSA
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of RFC 2459.


�PAGE \# "'Page: '#'�'"  �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'"  �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'"  �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'"  �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'"  �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'"  �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'"  �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'"  �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'"  �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'"  �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'"  �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'"  �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'"  �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'"  �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'"  �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'"  �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'"  �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'"  �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'"  �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.



