joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020220

Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
ftw (Joachim Zeiss)
Title:
Administration and Maintenance Interfaces
Agenda Item:

Document for:
Discussion

Category:

Work Item ID:

Doc Summary:
Reworked contribution N5-020076
Specs involved:
ETSI ES201915-3 V.0.0.7 (Framework)
In accordance with requirements in section 3.2.4 in document N5-011133 we see the demand for a Service Type Registration interface between service supplier and framework. Furthermore, we would like to point out the necessity of Life Cycle Management reconfiguration.

A)
Service Type Registration

Introduction

The IpFwServiceTypeRegistration interface should be standardized as already outlined in Parlay 2.1. This interface then should be accessible by a SCS
 to introduce specific service types required by its SCF
s.

Additionally, service type ownership needs to be introduced such that each SCS could manipulate only the service types it owns. Service types introduced to the framework should be tied to the parlay domain ID of the SCS that has introduced the service type.

According to this ownership concept, service types of SCS with domain ID A should be under controlled access for SCS with domain ID B, i.e. except of the framework administrator other parties should only have read access to service types owned by a service supplier.

Following scenario explains the need for service type registration by the SCS
:

1. the SCS authenticates and obtains interfaces at the framework for the purpose of service registration

2. the SCS uses a P_DISCOVERY (IpFwServiceDiscovery) interface to list service types but no appropriate service type could be found for registration of the new SCF

3. now the SCS uses the new interface P_TYPE_REGISTRATION (IpFwServiceRegistration) to add a new service type at the framework

4. the SCS enables the newly created service type

5. using a P_REGISTRATION (IpFwServiceRegistration) interface the SCS registers the SCF
 under the new service type

6. from now on the service type could be even used as a super type for other service types to be added later

Detailed Changes

**** FIRST MODIFIED SECTION ****

9.1.2 Service Registration Sequence Diagrams

9.1.2.1 New Service Type Registration
The following figure
 shows the process of registering a new Service Type required by a new Service Capability Feature
 in the Framework.

[image: image1.wmf]

SCS

 : IpFwAccess

 : IpFwServiceTypeRegistration

 : IpServiceDiscovery

obtainInterface

addServiceType()

disableServiceType()

enableServiceType()

removeServiceType()

Service Ty

pe Registration

Auth. Phase

followed by

listServiceTypes()

describeServiceType()

obtainInterface()

9.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service Registration is a two step process:

**** SECOND MODIFIED SECTION ****

9.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

9.2 Class Diagrams

[image: image2.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

[image: image3.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

[image: image4.wmf]

IpFwServiceTypeRegistration

addServiceType()

removeServiceType()

enableServiceType()

disableServiceType()

(from Framework interfaces)

<<Interface>>

Figure: Service Type Registration Package Overview
**** THIRD MODIFIED SECTION ****

9.3 Interface Classes

9.3.1 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the previous section enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.
If, however, a specific service type is required by the SCF
 to be registered, a service type could be added tailored
 to the needs of the new service.
9.3.1.1 Interface Class IpFwServiceTypeRegistration

Inherits from: IpInterface.
The Service Type Registration interface provides the methods used for the registration of service types required by SCFs
 at the framework.

<<Interface>>

IpFwServiceTypeRegistration

addServiceType(serviceTypeName : in TpServiceTypeName, serviceTypeDescription : in TpServiceTypeDescription) : void

removeServiceType(serviceTypeName : in TpServiceTypeName) : void
enableServiceType(serviceTypeName : in TpServiceTypeName) : void
disableServiceType(serviceTypeName : in TpServiceTypeName) : void

Method

addServiceType()

The addServiceType() operation will add a new service type
 to the framework. The service type owner is identified by the domainID of the SCS
 asking for the interface. Only specific service types can be added. Generic Service Types predefined by Parlay cannot be added by a SCS.

Parameters

serviceTypeName : in TpServiceTypeName

The name of the new service type to be added is defined by the “serviceTypeName” parameter. As the service type to be added is specific to the SCF using it the types name needs to be preceded by “SP_”. If not, a P_ILLEGAL_SERVICE_TYPE exception is raised. If the service type already exists, then a P_INVALID_SERVICE_TYPE exception is raised.

serviceTypeDescription : in TpServiceTypeDescription

The service type to be added will be described
 by the “serviceTypeDescription” parameter.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_INVALID_SERVICE_TYPE
Method

removeServiceType()

The removeserviceType() operation will delete a specified service type from the framework. It will no longer be available for its sub types
and new services can no longer register against this type. A service type can only be removed by the framework operator or the owner of the service type, i.e. the SCS which previously added this type.
Parameters

serviceTypeName : in TpServiceTypeName
The name of the service type to be removed is defined by the “serviceTypeName” parameter. If the service type is not owned by the caller a P_ILLEGAL_SERVICE_TYPE exception is raised. If the service type is not present a P_UNKNOWN_SERVICE_TYPE exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
Method

enableServiceType()

The enableServiceType() operation enables a service type on the framework. After calling this operation the service type becomes visible and might be used for service registration. Only the owner can enable the service type.
Parameters

serviceTypeName : in TpServiceTypeName

The name of the service type to be enabled is defined by the “serviceTypeName” parameter. If the service type is not owned by the caller a P_ILLEGAL_SERVICE_TYPE exception is raised. If the service type is not present a P_UNKNOWN_SERVICE_TYPE exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
Method

disableServiceType()

The disableServiceType() operation disables a service type on the framework. After calling this operation the servicetype is no longer visible and cannot be used for service registration
. All service types using the given service type will be disabled as well
. Only the owner or the framework operator
can disable the service type.
Parameters

serviceTypeName : in TpServiceTypeName

The name of the service type to be disabled is defined by the “serviceTypeName” parameter. If the service type is not owned by the caller a P_ILLEGAL_SERVICE_TYPE exception is raised. If the service type is not present a P_UNKNOWN_SERVICE_TYPE exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE
9.3.1.2 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

**** FOURTH MODIFIED SECTION ****

11.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_". The following values are defined.

Character String Value
Description

P_DISCOVERY
The name for the Discovery interface.

P_EVENT_NOTIFICATION
The name for the Event Notification interface.

P_OAM
The name for the OA&M interface.

P_LOAD_MANAGER
The name for the Load Manager interface.

P_FAULT_MANAGER
The name for the Fault Manager interface.

P_HEARTBEAT_MANAGEMENT
The name for the Heartbeat Management interface.

P_REGISTRATION
The name for the Service Registration interface.

P_TYPE_REGISTRATION
The name for the Service Type Registration interface

P_ENT_OP_ACCOUNT_MANAGEMENT
The name for the Service Subscription: Enterprise Operator Account Management interface.

P_ENT_OP_ACCOUNT_INFO_QUERY
The name for the Service Subscription: Enterprise Operator Account Information Query interface.

P_SVC_CONTRACT_MANAGEMENT
The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_INFO_QUERY
The name for the Service Subscription: Service Contract Information Query interface.

P_CLIENT_APP_MANAGEMENT
The name for the Service Subscription: Client Application Management interface.

P_CLIENT_APP_INFO_QUERY
The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT
The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFILE_INFO_QUERY
The name for the Service Subscription: Service Profile Information Query interface.

**** END OF DOCUMENT ****
B)
Lifecycle Management Reconfiguration

Introduction

Regarding service administration additional means to manage availability and connection as well as life cycle management integrity are required. Our investigations on framework usability came to the conclusion that maintenance of lifecycle management is essential for service deployment and usage.

Re-issuing the lifecycle managers reference for a given service ID should be possible. This would make the usage of a service, referenced by a framework chosen service ID, transparent to the client. Republishing a service under the same service ID would become possible. This is conceivable for scenarios of bug fix updates, Life Cycle Manager switching during hardware downtime or for software updates not requiring service property or service manager interface changes.

Detailed Changes

**** FIRST MODIFIED SECTION ****

4.1.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs and reconfiguration of their Life Cycle Managers at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

Method

registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications . A service-ID is returned to the service supplier when a service is registered in the Framework. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type and a set of named property types that may be used in further describing this service (i.e., it restricts what is acceptable in the servicePropertyList parameter). If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioral, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. An example of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVICE_TYPE,P_MISSING_MANDATORY_PROPERTY
Method

announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager"instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceManager: out IpServiceRefRef). When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID,P_INVALID_INTERFACE_TYPE
Method

unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
Method

unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.
For reconfiguration purposes of the Life Cycle Manager this operation can be invoked followed by calling announceServiceAvailability() providing the reference of a new Life Cycle Manager. For reconfiguration purposes of the Service Manager, however, the service needs to be unregistered.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID
**** END OF DOCUMENT ****
�PAGE \# "'Page: '#'�'" ��We don’t believe this should (or can) be accessible by an SCS since in order to obtain the interface the SCS would have to be registered and to be registered would require the prior existence of an appropriate Service Type. Appropriate entities to access these interfaces are Framework Operator (no domainID as yet) and Service Supplier.

�PAGE \# "'Page: '#'�'" ��SCSs

�PAGE \# "'Page: '#'�'" ��See earlier comment

�PAGE \# "'Page: '#'�'" ��Service Type registration

�PAGE \# "'Page: '#'�'" ��See previous comments

�PAGE \# "'Page: '#'�'" ��See previous comments about SCS vs Service Supplier

�PAGE \# "'Page: '#'�'" ��Service Capability Server / Service

�PAGE \# "'Page: '#'�'" ��We notice that the previously proposed listServiceTypes and describeServiceType methods have been removed. It is felt that they are needed in order to provide a more complete capability for managing service types (particularly as the Service Supplier may not want to have to obtain the Service Discovery/Registration interfaces to get access to those methods).

�PAGE \# "'Page: '#'�'" ��SCS/Service

�PAGE \# "'Page: '#'�'" ��“which is tailored”

�PAGE \# "'Page: '#'�'" ��SCSs

�PAGE \# "'Page: '#'�'" ��Does the new service type start “enabled” or “disabled”?

�PAGE \# "'Page: '#'�'" ��entity – Service Supplier and, possibly, Framework Operator if this role was added

�PAGE \# "'Page: '#'�'" ��No need to specify this in the spec as this could be dependent on the policies operated by the Framework.

�PAGE \# "'Page: '#'�'" ��See previous comment about not necessarily restricting this to SP_*. Also, P_TASK_REFUSED would be a better exception.

�PAGE \# "'Page: '#'�'" ��“defined”

�PAGE \# "'Page: '#'�'" ��It would seem that all sub-types would also have to be removed, or else the properties in the supertype explicitly added to the sub-types. Need to also describe what happens to all of the services that have already been registered and what happens to all of the service sessions that these services are involved in. Additionally, need to mention what happens to any event notifications requested that involve this service type.

We would recommend that a service type can only be remove once all services registered against it have been unregistered (which in turn implies that all service sessions and contracts have been terminated).

�PAGE \# "'Page: '#'�'" ��Also need to state what happens to any events for which this service type was part of the criteria.

�PAGE \# "'Page: '#'�'" ��Do you mean all subtypes using the given service type?

�PAGE \# "'Page: '#'�'" ��Role? Implies a new domainID?

�PAGE \# "'Page: '#'�'" ��Would have preferred to see this as a separate contribution.

�PAGE \# "'Page: '#'�'" ��Is this paragraph really necessary? The procedure described is implicit in the current version. Maybe the way to make this explicit is through a scenario? In any case the last sentence is incorrect (should refer to Service, not Service Manager).

_1075101234.doc

SCS

 : IpFwAccess

 : IpFwServiceTypeRegistration

 : IpServiceDiscovery

obtainInterface

addServiceType()

disableServiceType()

enableServiceType()

removeServiceType()

Service Type Registration

Auth. Phase

followed by

listServiceTypes()

describeServiceType()

obtainInterface()

_1075197539.doc
[image: image1.emf][image: image2.emf]

IpFwServiceTypeRegistration

addServiceType()

removeServiceType()

enableServiceType()

disableServiceType()

(from Framework interfaces)

<<Interface>>

