	

	This is a Draft Document of The Parlay Group, Inc.

	Parlay APIs 3.1
	PAM Interfaces - Version 0.1

	Parlay APIs 3.1

	Presence and Availability Management (PAM) Interfaces

Status
:
Draft – For Parlay Member Review Only

Issue
:
0.1

 SET DocIssueNum "0.4" * MERGEFORMAT 0.4

 SET DocIssueNum "0.3" * MERGEFORMAT 0.30.1

Date
:
11 Feb 2002

 SET DocDate "4 Feb 2002" * MERGEFORMAT 4 Feb 2002

 SET DocDate "28 Jan 2002" * MERGEFORMAT 28 Jan 200211 Feb 2002

	Copyright © The Parlay Group, Inc.. All Rights Reserved.

This document and translations of it, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to The Parlay Group, except as jointly determined by The Parlay Group and third party.

The limited permissions granted above are perpetual and will not be revoked by The Parlay Group or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and The Parlay Group DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

The Parlay Group takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.

Contents

100.1.
Revision Control

0.2.
Specification Status
10
0.3.
Contact Information
10
1.
Introduction
11
1.1.
Purpose of this document
11
1.2.
Purpose of the Parlay APIs
11
1.3.
Scope of this document
11
1.4.
The Parlay APIs
11
1.5.
Architecture of the Parlay APIs
12
2.
The Service Interface Specification
13
2.1.
Interface Class
13
2.2.
Method descriptions
13
2.3.
Parameter descriptions
13
2.4.
State Model
13
3.
Base Parlay Interface
14
3.1.1.
Interface Class
14
4.
PAM Services and Properties
15
4.1.
PAM Service Properties
15
4.1.1.
PAM Provisioning service properties
15
4.1.2.
PAM Presence and Availability Service
15
4.1.3.
PAM Event Service
15
5.
Generic Service Interface
17
5.1.1.
Interface Class
17
5.1.2.
setCallback()
17
5.1.3.
setCallbackWithSessionID()
17
6.
PAM Interfaces
19
6.1.
Introduction
19
6.2.
Motivation
19
6.3.
Goals
20
6.4.
Concepts
20
6.4.1.
Identity
20
6.4.2.
Agent
21
6.4.3.
Presence
22
6.4.4.
Availability
23
6.4.5.
Events
24
6.5.
Scope
24
6.6.
Security and privacy
25
7.
PAM Provisioning SCF
26
7.1.
Provisioning Manager Interface
26
7.1.1.
getAuthToken()
26
7.1.2.
obtainInterface()
27
7.2.
Identity Management Interface
27
7.2.1.
addAlias()
29
7.2.2.
addToGroup()
30
7.2.3.
associateTypes()
31
7.2.4.
createGroupIdentity()
32
7.2.5.
createIdentity()
32
7.2.6.
deleteGroupIdentity()
33
7.2.7.
deleteIdentity()
34
7.2.8.
disassociateTypes()
35
7.2.9.
getIdentityAttributes()
36
7.2.10.
hasType()
37
7.2.11.
isGroupIdentity()
37
7.2.12.
isIdentity()
38
7.2.13.
listAliases()
39
7.2.14.
listGroupMembership()
39
7.2.15.
listMembers()
40
7.2.16.
listTypesOfIdentity()
41
7.2.17.
lookupByAlias()
41
7.2.18.
removeAlias()
42
7.2.19.
removeFromGroup()
43
7.2.20.
setIdentityAttributes()
44
7.3.
Agent Management Interface
45
7.3.1.
associateTypes()
46
7.3.2.
createAgent()
47
7.3.3.
deleteAgent()
48
7.3.4.
disableCapabilities()
48
7.3.5.
disassociateTypes()
49
7.3.6.
enableCapabilities()
50
7.3.7.
getAgentAttributes()
51
7.3.8.
hasType()
52
7.3.9.
isAgent()
53
7.3.10.
isCapableOf()
53
7.3.11.
listAllCapabilities()
54
7.3.12.
listEnabledCapabilities()
55
7.3.13.
listTypesOfAgent()
56
7.3.14.
setAgentAttributes()
56
7.4.
Agent Asssignment Interface
57
7.4.1.
assignAgent()
58
7.4.2.
isIdentityCapableOf()
59
7.4.3.
listAssignedAgents()
60
7.4.4.
listAssignedAgentsByCapability()
60
7.4.5.
listAssociatedIdentitiesOfAgent()
61
7.4.6.
listCapabilitiesOfIdentity()
62
7.4.7.
unassignAgent()
63
7.5.
Identity Type Management Interface
63
7.5.1.
addIdentityTypeAttributes
64
7.5.2.
createIdentityAttribute
65
7.5.3.
createIdentityType
66
7.5.4.
deleteIdentityAttribute
67
7.5.5.
deleteIdentityType
67
7.5.6.
getIdentityAttributeDefinition
68
7.5.7.
listAllIdentityAttributes
69
7.5.8.
listIdentityTypeAttributes
69
7.5.9.
listIdentityTypes
70
7.5.10.
removeIdentityTypeAttributes
70
7.6.
Agent Type Management Interface
71
7.6.1.
addAgentTypeAttributes
72
7.6.2.
createAgentAttribute
73
7.6.3.
createAgentType
74
7.6.4.
deleteAgentAttribute
74
7.6.5.
deleteAgentType
75
7.6.6.
getAgentAttributeDefinition
76
7.6.7.
listAllAgentAttributes
77
7.6.8.
listAgentTypeAttributes
77
7.6.9.
listAgentTypes
78
7.6.10.
removeAgentTypeAttributes
78
7.7.
Capability Management Interface
79
7.7.1.
addCapabilityAttributes
80
7.7.2.
assignCapabilitiesToType()
81
7.7.3.
createCapabilityAttribute
82
7.7.4.
createCapability
83
7.7.5.
deleteCapabilityAttribute
83
7.7.6.
deleteCapability
84
7.7.7.
getCapabilityAttributeDefinition
85
7.7.8.
listAllCapabilityAttributes
86
7.7.9.
listCapabilitiesOfType()
86
7.7.10.
listCapabilityAttributes
87
7.7.11.
listCapabilities
88
7.7.12.
removeCapabilityAttributes
88
7.7.13.
unassignCapabilitiesFromType()
89
8.
PAM Presence and Availability SCF
91
8.1.
Presence and Availability Manager Interface
91
8.1.1.
getAuthToken()
91
8.1.2.
obtainInterface()
92
8.2.
Identity Presence Interface
92
8.2.1.
getIdentityPresence()
93
8.2.2.
setIdentityPresence()
94
8.2.3.
setIdentityPresenceExpiration()
95
8.3.
Availability Interface
96
8.3.1.
getAvailability()
97
8.3.2.
getPreference()
98
8.3.3.
setPreference()
99
8.4.
Application Preference Check Interface
100
8.4.1.
allowAccess()
100
8.4.2.
allowSubscription()
101
8.4.3.
computeAvailability()
102
8.5.
Agent Presence Interface
102
8.5.1.
getAgentPresence()
103
8.5.2.
getCapabilityPresence()
104
8.5.3.
setAgentPresence()
105
8.5.4.
setCapabilityPresence()
106
8.5.5.
setAgentPresenceExpiration()
107
8.5.6.
setCapabilityPresenceExpiration()
108
9.
PAM Event SCF
110
9.1.
Event Manager Interface
110
9.1.1.
getAuthToken()
110
9.1.2.
obtainInterface()
111
9.2.
Event Registration Interface
111
9.2.1.
deregisterAppInterface
112
9.2.2.
deregisterFromEvent
112
9.2.3.
isRegistered
113
9.2.4.
registerAppInterface
114
9.2.5.
registerForEvent
114
9.3.
Application Notification Interface
115
9.3.1.
eventNotify
115
10.
Appendix
117
10.1.
UML Models
117
10.1.1.
Identity
117
10.1.2.
Agent
118
10.2.
Model
118
10.3.
Architecture
119
10.4.
Levels of access
121
10.4.1.
Application
122
10.4.2.
Service
122
10.4.3.
Thin client
122
10.5.
Use cases
122
10.5.1.
Identity Management
122
10.5.2.
Agent Management
123
10.5.3.
Agent Assignment
123
10.5.4.
Agent Presence
124
10.5.5.
Identity Presence
124
10.5.6.
Availability
124

Figures

12Figure 1 Parlay Interfaces

Figure 2 “Keeping end-users in the loop”
119
Figure 3 Information sharing via PAM interfaces
119
Figure 4 Abstraction over legacy systems
120
Figure 5 Exporting from communication services
120
Figure 6 PAM enabled communications
121

Revision Control
Revisions of this document are controlled using a numeric system where the first number represents major revisions (changes resulting from formal steering committee review) and the second number represents minor revisions (changes resulting from formal steering committee review).
	Issue
	Date
	Reason for Change

	0.1
	11 Feb 2002
	First Draft. Joint Working Group Drafting for ETSI/3GPP adoption

The master copy of this document is held in electronic format on the Parlay website at http://www.parlay.org.

0.1. Specification Status

This document is at version 0.1 and is a part of version 3.1 of the Parlay APIs.

0.2. Contact Information

Contact information for the Parlay Group can be found on the Parlay website at http://www.parlay.org.

All product names mentioned within this specification are the trademarks of their respective owners.

1. Introduction

1.1. Purpose of this document

This document defines the PAM interfaces, methods, parameters and state models that are of interest to developers of enterprise-based client applications.

1.2. Purpose of the Parlay APIs

The Parlay APIs are open, technology and network independent, and extensible. The APIs provide secure and open access to the capabilities of a wide range of today’s communication networks, while being sufficiently adaptable to address similar capabilities in future networks. The Parlay Group plans to extend the functionality, as specified in this document, releasing new versions at frequent and regular intervals. The purpose of these APIs is to present a single standardised, abstracted and in many cases simplified way to control the communications networks of today, and through extensions to the APIs, to evolve and address the networks of tomorrow.

These APIs are for use by the “end user application” developers in software development companies, enterprises of all sizes, and network operators.

1.3. Scope of this document

The Parlay APIs provide the functionality needed to develop a number of powerful network and CTI applications. This document defines access to PAM functionality.

1.4. The Parlay APIs

The Parlay APIs are a set of documents representing the framework interfaces; the individual service interfaces; the data definitions; class diagrams; sequence diagrams; and IDL files.

Note: While the Parlay APIs are referred to as being at version 3.0, the individual documents that constitute this set have their own individual version control that is independent from the overall Parlay APIs version number.

These documents plus additional information can be found on the Parlay website at http://www.parlay.org.

1.5. Architecture of the Parlay APIs

The Parlay APIs are object-oriented and consist of several categories of interfaces as shown in Figure 1. Phase 1 addressed public interfaces between enterprise-based client applications and Parlay services (interface 2) and the Parlay Framework (interface 1), where:

· Parlay Service Interfaces offer applications access to a range of network capabilities.

· Parlay Framework Interfaces provide 'surround' capabilities necessary for the Service Interfaces to be open, secure, resilient and manageable.

In Phase 2, additional public interfaces are introduced to support administrative functions within the enterprise (interfaces 4 & 6) and to permit the supply of Parlay services by third party vendors (interfaces 3 & 5).

The PAM interface is represented by interface 2.

[image: image1.wmf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

Telecom Network

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

2

2

6

6

Client

Application

Not in

 scope

of Parlay

Phase 2

Figure 1 Parlay Interfaces

In order to realise the Service and Framework interfaces, it is recognised that categories of resource interfaces are required to facilitate integration of network equipment. The definition of the resource interfaces is not in the scope of the Parlay Group at this time.

2. The Service Interface Specification

This document defines the interfaces, methods and parameters that form a part of the Parlay APIs. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of a Parlay interface specification is described below.

2.1. Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

2.2. Method descriptions

Each method (API method “call”) is described. The methods in the Parlay APIs return void or a result value if the methods executed successsfully. All error conditions and/or abnormal terminations are communicated via exceptions.
Both synchronous and asynchronous methods are used in the Parlay APIs. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

2.3. Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

2.4. State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

3. Base Parlay Interface

All application, framework and service interfaces inherit from the following interface. This API Base Parlay Interface does not provide any additional methods.

3.1.1. Interface Class

	<<Interface>>

IpInterface

	

	

4. PAM Services and Properties

PAM consists of the following SCFs

· PAM Provisioning Service

· PAM Presence and Availability Service

· PAM Event Service

The provisioning service consists of the Identity Management, Agent Management, Agent Assignment, Agent Type Management, Identity Type Management and Capability Management interfaces. The interfaces in this service is not obtainable for this release of the specifications for 3GPP.

The presence and availability service consists of the agent presence, identity presence and availability interfaces. The agent presence interface is not obtainable in the release of the service.

The Event service consists of the Event Management interfaces.

4.1. PAM Service Properties

The following table lists properties relevant to all the PAM SCFs

	Property
	Type
	Description

	P_OBTAINABLE_INTERFACES
	STRING_SET
	The interfaces obtainable from the service

4.1.1. PAM Provisioning service properties

Implementations of the PAM Provisioning APIs relying on the CSE shall have the Service Properties set to the indicated values:

P_OBTAINABLE_INTERFACES = {}

4.1.2. PAM Presence and Availability Service

Implementations of the PAM Presence and Availability APIs relying on the CSE shall have the Service Properties set to the indicated values:

P_OBTAINABLE_INTERFACES = {
”IdentityPresence”,
”Availability”,
}

4.1.3. PAM Event Service

PAM Event service has the following property in addition to the above.

	Property
	Type
	Description

	P_EVENT_TYPES
	STRING_SET
	The pre-defined event types that can be registered for

Implementations of the PAM Event APIs relying on the CSE shall have the Service Properties set to the indicated values:

P_OBTAINABLE_INTERFACES = {
”EventRegistration”,
}

P_EVENT_TYPES = {
PAM_CE_IDENTITY_PRESENCE_SET,
PAM_CE_AVAILABILITY_CHANGED,
PAM_CE_WATCHERS_CHANGED
}

5. Generic Service Interface

Inherits from the base Parlay interface.

All service interfaces inherit from the following interface.

5.1.1. Interface Class

	<<Interface>>

IpService

	

	setCallback(appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID(appInterface : in IpInterfaceRef , sessionID : in TpSessionID) : void

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Exceptions

TpGeneralException

Thrown when one of the generic Parlay error conditions are encountered.

Method

setCallbackWithSessionID()

This method specifies the reference address of the application’s callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application’s callback interface.

Exceptions

TpGeneralException

Thrown when one of the generic Parlay error conditions are encountered.

6. PAM Interfaces

6.1. Introduction

The goal of these interfaces is to establish a standard for maintaining and publishing information about

· Digital identities,

· Characteristics and presence status of agents (representing capabilities for communication, content delivery, etc.),

· Capabilities and state of entities, and

· Presence and Availability of entities for various forms of communication and the contexts in which they are available.

Establishing such a standard in the industry will facilitate creation of many inter-operable services over multiple network technologies and, in addition, allow end users greater flexibility in managing their services and communication capabilities while addressing their privacy concerns.

6.2. Motivation

Consider the following simple but desirable scenario for a communication service: An end-user wishes to receive instant messages from her management at any time on her mobile phone, from co-workers only on her desktop computer, and in certain cases for the messages to be forwarded to e-mail or even a fax machine/printer. The senders may know her availability for various forms of communication in the way she chooses to reveal it or alternatively the senders may never know how she will be receiving their messages. This scenario spans over multiple services and protocols and can only be solved currently by a proprietary solution that maintains the required information in an ad-hoc fashion within the application.

PAM is not a replacement for the protocols being standardized for various communication and network services. PAM attempts to standardize the management and sharing of presence and availability information across multiple services and networks.

The PAM specification is motivated by the observations that

· The notions of Identity, Presence and Availability are common to but independent of the various communication technologies, protocols and applications that provide services using these technologies.

· Presence does not necessarily imply availability. End-users or organizations require greater control over making themselves available through various communication devices.

· Presence based services need to address privacy concerns on who can access presence information and under what conditions.

Management of availability will span over multiple communication services and service providers.

6.3. Goals

The main goal of Presence and Availability Management is to facilitate the development of a rich set of applications and services that span over multiple communication systems (instant messaging, e-mail, fax, telephony, etc.) and to provide the end user greater flexibility and control in managing their communications. A standardized platform allows software developers to create communication management applications that are independent of the underlying technologies and protocols.

As the next step in the evolution of directory and database enabled applications and services, separation of the management of identities and availability of users or organizations from specific applications enables uniform and centralized administration of data and creates the potential to bring control over communication services to the user’s desktops.

The purpose of this document is to adopt the first release of a Presence and Availability Management interface specification created by an industry consortium, PAMforum, established for this purpose harmonized with the IETF model for presence (RFC 2778) and 3GPP Presence Service requirements (TS 22.141).

With a desired goal of rapid acceptance and usage, the specification has been deliberately designed to be as simple as possible with an attempt to include a minimal set of functionality that is sufficient for use in non-trivial applications. Often, this has been at the cost of some useful features, which would have made the specification baroque and cumbersome if not controversial.

6.4. Concepts

This chapter briefly describes the various concepts involved in this specification to serve as the context for the rest of the document.

6.4.1. Identity

Identity, for purposes of the PAM specification, is a limited electronic representation of an entity (i.e., an individual or an organization) that participates in PAM-enabled applications and services. This concept corresponds to the concept of Presentity as described in the IETF Common Presence and Instant Messaging Model (RFC 2778) and described in 3GPP requirements for presence (TS 22.141).

The main characteristic of an entity that is central to PAM specifications is the name (or handle) by which entities are identified by applications and services. Entities may have multiple names, login ids, account names, etc., by which they are identified. As PAM attempts to abstract over multiple networks and services, it does not assume that a single name will necessarily identify entities across all application domains.

The generalized structure available in 3GPP for user names that may contain various formats for addressing has been adopted for these specifications.

To enable entities to be identified by any of the names associated with them, PAM identities can be assigned aliases. A name and a namespace pair can be defined as an alias of another name and namespace pair. It is important to note that aliases are just synonyms and hence have limited semantics. In particular, they are not powerful enough to model personas each with their own capabilities and privacy requirements.

An identity can represent a single entity or a group of identities. Group identities have similar semantics to non-group identities but, in addition, maintain a list of identities that constitute the group. As an example, a sales department may be modeled as a group identity with the identities of the members of the department being member identities of the group. Group identities and their member identities do not inherit anything from each other.

No other relationships between identities are within the scope of the PAM specifications.
For flexibility and extensibility, attribute lists are used to associate additional data with identities. Identities are typed to provide a way to manage such attribute lists. An identity type may be associated with a specific set of attributes and all identities of that type inherit instances of such attributes.

For consistency with IETF (RFC 2778) and 3GPP requirements (TS 22.141) defined presence data models, PAM pre-defines an identity type Presentity.

PAM implementations may map certain existing directory and database data to one or more types to allow access via PAM interfaces. PAM specifications do not specify how the data within the profiles are to be stored. They may be stored within the PAM implementation or mapped to data stored on external directories and databases.

6.4.2. Agent

An agent, for PAM purposes, is a limited electronic representation of a software or hardware device through which identities manifest themselves or make themselves available to applications and services.

An important characteristic of an agent is a list of one or more capabilities associated with it. A capability is what makes an agent useful. A capability either represents the ability of an agent to participate in communications and content delivery (e.g., instant messaging, SMS, WAP, voice) or it represents the ability of an agent to report useful information (e.g., location, velocity, temperature, mood) of the environment around it.

PAM does not specify any pre-defined capabilities. Applications may define and use their own capabilities.

Agent instances are identified by names (or handles). As for identities, names exist in the context of a namespace. Within a namespace, a name is assumed to be unique. Two agent instances can have the same name as long as they are in different namespaces. For example, a mobile phone and a PDA manufactured by two different manufacturers may coincidentally have the same serial number by which they are identified. As PAM attempts to unify services over multiple technologies, it does not assume that a name uniquely identifies agent instances across all technologies or across all manufacturers. They can be disambiguated through the use of namespaces.

No relationships between agents are within the scope of the PAM specifications.

For flexibility and extensibility, attribute lists are used to associate additional data with agents. Agents are typed to provide a way to manage such attribute lists. An agent type may be associated with a specific set of attributes and all agents of that type inherit instances of such attributes.

PAM does not specify any pre-defined attributes or types. Applications may define and use their own agent types.

PAM implementations may map certain existing directory and database data to one or more types to allow access via PAM interfaces. PAM specifications do not specify how the data within the profiles are to be stored. They may be stored within the PAM implementation or mapped to data stored on external directories and databases.

Agent instances are associated with one or more identities. This association results in the inheritance of associated agents’ capabilities by the identities.

6.4.3. Presence

The concept of presence has been used in several application areas, being most explicit in Instant Messaging. Starting from a simple notion of online/offline status, it has expanded to include other context information around the status such as disposition (out to lunch, away from the computer, etc.) and activity status (on the phone, idle, etc.). Location information, on the other hand, has largely been kept separate from what has been traditionally considered presence information. PAM specifications broaden the concepts of presence recognizing that all such information, including location, describes different contexts of an entity’s existence. The unifying property is that the presence information is continually changing and that there is value in knowing the current information at different points in time for services and applications.

For the purposes of PAM specifications, presence is an extensible set of characteristics that captures the dynamic context in which an identity or an agent exists at any point in time. In contrast to the relatively static information about identities or agents (e.g., names, addresses, capabilities), presence refers to dynamic information such as location, status, disposition, etc. Registrations of presence and location information in existing applications are covered by this definition.

Presence information is differentiated from the more static information associated with identities and agents that are stored in attributes. The rationalization for this design is that the presence information is dynamic and has implications on the implementation. Some of the presence information is too dynamic to be maintained in static data stores such as directories and without this hint about the data characteristics, PAM implementers may make sub-optimal decisions on the way the data is stored. Second, presence information typically has expiration data that needs to be understood by the implementation.

The PAM specification recognizes that devices that provide presence information are not necessarily devices that communicate. Certain agents may report presence information but not be capable of communication. Certain agents may be communication devices but may not be able to provide presence information. In general, the presence of an identity is computed from presence information provided by one or more agents and the ability to communicate is derived from one or more communication-capable agents available to the identity.
The PAM specification does not specify the methods by which the presence information is derived. An agent may explicitly register its own presence information or the information may be derived from other network elements. For example, an instant messaging client on a desktop computer can register its status based on when a user is logged in. A mobile phone may do an explicit registration on a WAP server for instant messaging. The phone’s presence for voice calls, on the other hand, may be inferred implicitly by querying the cellular network for the device being on when requested. The presence of an identity, on the other hand, may be computed using presence information from one or more devices owned by the identity.

Finally, the PAM specification does not require that the presence information be stored explicitly (i.e., in a materialized fashion) in a PAM implementation. An implementation may infer the presence information on demand from the underlying services or networks.

For compatibility with the presence model from IETF (RFC 2778) adopted into 3GPP (TS 22.141), a type called Presentity is pre-defined with the attributes consistent with the IETF Presence model.
6.4.4. Availability

Availability is a property of an identity denoting its ability and willingness to share information about itself or to communicate with another identity based on factors such as the type of communication requested, the identity of the calling entity and the preferences and policies that are associated with the recipient. This is the primary means by which the current PAM specification enables controls for privacy. While presence is, in most applications, a necessity for availability, presence does not necessarily imply availability to all.

Availability is always with respect to a context. A context in PAM specifications is a set of attributes defining the state in which the availability is requested. For example, the query “Is Jane available for IM for Rob?” identifies the type of communication and the identity of the asker as the context. PAM allows for availability to be differentiated based on any attribute of a context. A context, “Communication” is pre-defined in PAM.

Most queries for presence in existing applications can be mapped into PAM availability queries to control the information being given out. Alternatively, queries can be mapped directly into PAM presence queries in situations where privacy controls and policies are not required or all presence data is open to the entity querying. This allows PAM specifications to be consistent with existing presence servers and to serve as the basis for presence services across multiple protocols while providing uniform and flexible privacy controls.

PAM specification does not specify whether the availability is computed on demand or stored explicitly. In some applications, the availability may be pre-computed and stored explicitly while in some, it may be computed at each request for availability.

While the PAM specification provides a mechanism to associate preferences with an Identity to control availability, it neither specifies the syntax and semantics of the preferences nor the process by which the availability is computed. These aspects are left to the implementation.

For example, a particular implementation may provide the facility to store preferences as rules such as “I prefer to receive my instant messages on my computer rather than my cell phone unless the message is from my boss or the computer is off, etc.”.

As an example, a computation of availability for communication may consist of the following algorithm:

1. Find all devices of the identity being called that are capable of the specified form of communication AND have registered their presence status as available.
2. Evaluate the rules associated with the identity being called to select the preferred device(s) from the set of present devices determined in Step 1.
3. If there are any devices available satisfying Step 2, indicate the availability of the identity being called via the available devices.
An implementation can chose to provide one or more means to specify preferences. It is expected that if there is industry standardization on the specification of preferences, the implementations will support such a standard. This is currently outside the scope of PAM.

6.4.5. Events

Events are representations of certain identified occurrences related to the concepts described above. The PAM specification provides for registering interest (i.e., callbacks) in being notified of such occurrences. Any entity that subscribes to the Event is a “watcher” in the IETF terminology (RFC 2778) adopted into 3GPP (TS 22.141). An implementation is expected to provide such notifications.

Examples of events include,

· Creation/deletion of an identity

· Association of an agent instance with an identity

· Change in presence status or location of an agent instance

· Change in availability of an identity for a particular form of communication

PAM specifications contain a set of pre-defined events. Each event is defined by a name of the event, a set of input attribute value pairs that must be provided when an event is registered for and a set of attribute value pairs that are included in the notifications sent out when the event of interest occurs.

6.5. Scope

Presence and Availability Management has the following types of information in its scope:

· Identities, which consist of names and aliases of entities participating in communications.

· Agent information, which consists of names and communication capabilities of software and/or hardware devices.

· Agent provisioning, which consists of associations between instances of agents and identities.
· Presence information, which consists of an identity’s or an agent’s dynamic characteristics such as status and geographical location.

· Availability information, which consists of preferences associated with identities and computation of availability, based on the devices present and the current preferences.

· Notification of changes to the above pieces of information.

· Security issues for access to this information.

The PAM specification consists of interfaces to manage or access the above information.

The specification purposefully does not include

· Storage design or storage requirements for any of the presence and availability information.

· Protocol specification to access the interfaces.

These are to be decided by specific implementations of the PAM specification.

6.6. Security and privacy

As the Presence and Availability Management interface is designed to share information across administrative domains and to facilitate availability computation based on the identity of the entity desiring communication, security and privacy issues are addressed in the design. Two of the issues considered to be within the scope of PAM are:

· Access control to an implementation of the PAM specification.

· Use of an authenticated entity’s credentials by methods in the specification.

To understand the distinction between the first two issues, consider, for example, an end-user that logs on to an Instant Messaging client and wishes to send a message. The client (or a gateway to which the client talks to) may access a PAM implementation to determine the availability of the destination for the message. The client (or the gateway) will need to be authorized for access to the PAM implementation independent of the user that logs in. A gateway may, in fact, do this access on behalf of a number of clients and, for performance reasons, wish to authenticate itself just once on start up rather than at each invocation. Second, each invocation of a particular method to check for the availability will need to contain the credentials of the end-user that logged into the client so that the computation of the availability can take that into account when necessary for privacy issues.

It should be noted that the PAM specification allows for the possibility that the authentication of the end-users is not necessarily done within the PAM implementation itself. As long as the authenticated credentials supplied by the client (or gateway) are acceptable for validation and the client (or the gateway) itself is authenticated by the implementation, the authentication of end-users can occur anywhere outside the PAM implementation. A deployment scenario for a particular application is that one or more authentication services are provided as external services over PAM implementations.

This design does not preclude the possibility that the client (or the gateway) cannot be authenticated. Therefore, the credentials supplied by the client (or the gateway) may be held to stronger authentication criterion than credentials supplied by a trusted client (or gateway).

Finally, the PAM specification does not mandate the use of authentication within an implementation if the environment in which it is used does not require it.

Privacy issues are addressed primarily by providing a mechanism to control the information flowing out of a PAM implementation based on whatever criterion the end user may choose to specify in the availability preferences and independent of any particular application.

The following security issues were considered to be outside the scope of PAM:

· Authentication of the identity of the end-users or entities. As explained above, this authentication may be provided by a third-party authentication service or it may occur through an authentication service written over the PAM platform. The only requirement is that the type of credentials supplied by the authentication service be acceptable to the PAM platform implementation being accessed.

· Encryption of the flow of information between a PAM platform implementation and clients of this implementation. This is dependent on the method of access to the interface which is outside the scope of the PAM specification and hence to be determined by the implementation.

7. PAM Provisioning SCF

This service consists of interfaces to provision identities, agents and the relationships between them.

7.1. Provisioning Manager Interface

The purpose of this interface is to supply the various interfaces available in this service to the application and to provide the authentication credentials. This interface is the only discoverable interface from the framework.

All PAM methods use an authentication token as a parameter since the outcome of the operations may depend on the entity requesting the operation. To enable this, the getAuthToken() method is used to obtain an implementation dependent token. An application that has authenticated itself with the Parlay framework, can get an authentication token for itself. Alternatively, if the application is requesting PAM operations on behalf of multiple entities, authentication tokens may be requested for each such entity after providing any available data about the asker. These tokens can then be used repeatedly for operations within a session without further need to identify the asker.

	<<Interface>>

IpPAMProvisioningManager

	

	getAuthToken (in askerData : in TpPAMDataList) : TpPAMCredential

obtainInterface(interfaceName: in TpString) : IpInterfaceRef

Method

getAuthToken()

Get an authentication token for access to the interface methods.

Parameters

askerData : in TpPAMDataList

specifies information about the asker. Can be an empty array.

Return Type

TpPAMCredential

is an implementation-dependent authentication credential that can be verified.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

obtainInterface()

Obtain available interfaces from the service. The valid parameters for this method can be obtained from the service property P_OBTAINABLE_INTERFACES
Parameters

interfaceName : in TpString

specifies the name of the required interface.

Return Type

IpInterfaceRef

Returns the requested interface.

Exceptions

P_PAM_UNAVAILABLE_INTERFACE

indicates that the specified interface does not exist or is unavailable.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.
7.2. Identity Management Interface

The purpose of this interface is to manage end-user or entity names, aliases, groups and sets of attributes associated with identities. An implementation may map these methods to operations on existing directories or databases. Some implementations may choose to provide a read-only access to the identity information.

The names of identities within a namespace must be unique. Each implementation exports an identifier as the default namespace that it serves. The identity name and the namespace may be used as an alias to another identity in a different namespace.

Aliases are associated with a given identity or group identity. Aliases must be uniquely assigned. In other words, two identities may not share the same alias.

This interface is meant for use by provisioning applications that establish and maintain identity names.

	<<Interface>>

IpPAMIdentityManagement

	

	createIdentity(identity : in TpPAMFQName, identityTypes : in TpStringList, authToken : in TpPAMCredential) : void

deleteIdentity(identity : in TpPAMFQName, authToken : in TpPAMCredential) : void

isIdentity(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpBoolean

createGroupIdentity(identity : in TpPAMFQName, identityTypes : in TpStringList, authToken : in TpPAMCredential) : void

deleteGroupIdentity(identity : in TpPAMFQName, authToken : in TpPAMCredential) : void

addToGroup(group : in TpPAMFQName , member : in TpPAMFQName, authToken : in TpPAMCredential) : void

removeFromGroup(group : in TpPAMFQName, identity : in TpPAMFQName, authToken : in TpPAMCredential) : void

listMembers(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

isGroupIdentity(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpBoolean

listGroupMembership(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

addAlias(identity : in TpPAMFQName, alias : in TpPAMFQName, authToken : in TpPAMCredential) : void

removeAliases(identity : in TpPAMFQName, alias : in TpPAMFQName, authToken : in TpPAMCredential) : void

listAliases(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

lookupByAlias(alias : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQName

associateTypes(identity : in TpPAMFQName, identityTypes: in TpStringList, authToken : in TpPAMCredential) : void

disassociateTypes(identity : in TpPAMFQName, identityTypes: in TpStringList, authToken : in TpPAMCredential) : void

listTypesOfIdentity(identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

hasType(identity : in TpPAMFQName, typeName : in TpString, authToken : in TpPAMCredential) : TpBoolean

getIdentityAttributes(identity : in TpPAMFQName, identityType : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : TpPAMAttributeList

setIdentityAttributes (identity : in TpPAMFQName, identityType : in TpString, attributes : in TpPAMAttributeList, authToken : in TpPAMCredential) : void

Method

addAlias()

Add an alias in the specified namespace to an existing Identity. The alias domain name must be specified in Alias parameter. The identity can be a group identity.

Parameters

identity : in TpPAMFQName

specifies the Identity to which the alias will be added.

alias : in TpPAMFQName

specifies the alias to be added.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_ALIAS_EXISTS

indicates that the specified alias is already associated to the Identity.

P_PAM_ALIAS_NOT_UNIQUE

indicates that the alias has already been assigned to another identity.
P_PAM_UNKNOWN_IDENTITY

indicates that specified Identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

addToGroup()

Add an existing identity to a group identity. Both the group identity and the member identity to be added must have been created before this operation can be invoked. A member identity can be a group identity. Implementation must not allow cycles in memberships.

Parameters

group : in TpPAMFQName

specifies the group Identity to which the member will be added.

member : in TpPAMFQName

specifies the identity to be added as a member of the group.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_MEMBER_EXISTS

indicates that the specified member is already in the group.

P_PAM_UNKNOWN_GROUP

indicates that the specified group identity does not exist.

P_PAM_UNKNOWN_MEMBER

indicates that the specified member identity does not exist.

P_PAM_IS_CYCLIC

indicates that the requested operation will create cyclic relationship.
P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

associateTypes()

Associate an identity instance with the specified types. The identity will be associated with instances of any attributes defined with each type. The initial values of the attributes will be as specified in the definition of the type attributes.

Parameters

identity : in TpPAMFQName

specifies the name of the identity

identityTypes : in TpStringList

specifies the names of the type to be associated.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that specified Identity does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_TYPE_ASSOCIATED

indicates that a named type has already been associated with the identity.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

createGroupIdentity()

Create a new Group Identity with the specified name. Name must be unique across both group identities and non-group identities. Names must be unique across the same types.

Parameters

identity : in TpPAMFQName

specifies the group Identity to be created.

identityTypes : in TpStringList

specifies the group’s associated types. Can be an empty array.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_IDENTITY_EXISTS

indicates that the specified Identity is already in the group.

P_PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

createIdentity()

Create a new non-Group Identity with the specified name. Names must be unique across both group identities and non-group identities. Names must be unique across types within a namespace.

Parameters

identity : in TpPAMFQName

specifies the Identity to be created.

identityTypes : in TpStringList

specifies the identity’s associated types. Can be an empty array.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_IDENTITY_EXISTS

indicates that the specified Identity already exists.

P_PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

deleteGroupIdentity()

Delete the specified group identity and all its related data. Upon successful completion, associated aliases and attribute instances are deleted from the system. The identity is also removed from all groups of which the identity is a member. The member identities of the group are not deleted.

Parameters

identity : in TpPAMFQName

specifies the group Identity to be deleted.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOW_IDENTITY

indicates that the specified Group Identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

deleteIdentity()

Delete the specified identity and all its related data. Upon successful completion, associated aliases and attribute instances are deleted from the system. The identity is also removed from all groups of which the identity is a member.

Parameters

identity : in TpPAMFQName

specifies the Identity to be deleted.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOW_IDENTITY

indicates that the specified non-Group Identity does not exists.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

disassociateTypes()

Remove the association of a type with an identity instance. The definition of the type itself remains unaffected and the types may continue to be associated with other identities.

Parameters

identity : in TpPAMFQName

specifies the identity.

identityTypes : in TpStringList

specifies the names of the types to be removed.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified identity does not exist.

P_PAM_DISASSOCIATED_TYPE

indicates that one of the specified types is not associated with the named identity.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

getIdentityAttributes()

Return the attributes associated with the identity. If the identity type is not specified, all associated types are assumed to be of interest.

Parameters

identity : in TpPAMFQName

specifies the Identity whose attributes are to be accessed.

identityType : in TpString

specifies the type of the identity with which the required attributes are associated. Is optional.

attributeNames : in TpStringList

list of attributes of interest. Can be an empty array.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

contains the list of specified attributes and their values. If the attributes parameter is an empty array, all attributes in the named identity are output.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified Identity does not exist.

P_PAM_UNKNOWN_TYPE

indicates that one of the specified types is not associated with the named identity
P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the named attributes is not part of the specified type.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

hasType()

Check if the specified identity has the named type associated with it.

Parameters

identity : in TpPAMFQName

specifies the Identity to be checked.

typeName : in TpString

specfies the type to be checked for.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

true if an identity with the specified name has the named type associated with it, false otherwise.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified Identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

isGroupIdentity()

Check if the specified group identity exists. The method returns false for non-group identities

Parameters

identity : in TpPAMFQName

specifies the Identity to be checked.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

true if a group identity with the specified name exists, false otherwise.

Exceptions

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

isIdentity()

Check if the specified non-group Identity exists. The method returns false for group identities.

Parameters

identity : in TpPAMFQName

specifies the Identity to be checked.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

tru true if an identity with the specified name exists and false otherwise.

Exceptions

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

listAliases()

List the aliases of the specified Identity.

Parameters

identity : in TpPAMFQName

specifies the Identity to be looked up.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

is a list containing all aliases to the specified Identity. An list with zero elements is returned if there are no aliases associated with the identity.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

listGroupMembership()

List the Group Identities the specified Identity is a member of.

Parameters

identity : in TpPAMFQName

specifies the Identity to be looked up.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

list of all groups the specified Identity is member of. An empty list is returned if the identity is not member of any group.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

listMembers()

List the members of the specified group Identity.

Parameters

identity : in TpPAMFQName

specifies the group Identity whose members are required.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

list of members of the specified group Identity. An empty list is returned if the identity has no members.

Exceptions

P_PAM_UNKNOWN_GROUP

indicates that the specified Group identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

listTypesOfIdentity()

List the types associated with the specified Identity.

Parameters

identity : in TpPAMFQName

specifies the Identity to be looked up.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

is a list containing all types associated with the specified Identity. A list with zero elements is returned if there are no types associated with the identity.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

lookupByAlias()

Find the identity with the specified alias in the specified alias domain.

Parameters

alias : in TpPAMFQName

specifies the alias to be looked up.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQName

is the identity that has the specified alias. Returns null if the alias is not assigned to any identity.

Exceptions

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

removeAlias()

Remove the specified alias from an existing identity.

Parameters

identity : in TpPAMFQName

specifies the Identity from which the alias will be deleted.

alias : in TpPAMFQName

specifies the alias to be deleted.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified identity does not exist.

P_PAM_UNASSIGNED_ALIAS

indicates that the specified alias was not an alias of the named identity.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

removeFromGroup()

Remove an existing identity from the membership of a group identity.

Parameters

group : in TpPAMFQName

specifies the Group Identity from which the member will be removed.

identity : in TpPAMFQName

specifies the Identity to be removed as a member of the group.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_NOT_MEMBER

indicates that the specified member is not member of the group.

P_PAM_UNKNOWN_GROUP

indicates that the specified group does not exist.

P_PAM_UNKNOWN_MEMBER

indicates that the specified member identity does not exist.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

setIdentityAttributes()

Modify the attributes associated with the named Identity. The input may contain a subset of the attributes of the named type. Only the specified attributes will be modified and the rest will remain unchanged. If the type is unspecified, any associated type will be assumed

Parameters

identity : in TpPAMFQName

specifies the Identity.

identityType : in TpString

specifies the type of the identity for the operation. Is optional.
attributes : in TpPAMAttributeList

contains the list of attributes and their values.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the specified Identity does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named identity has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTES

indicates that the specified profile contains attributes not part of the named type.
P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

7.3. Agent Management Interface

The purpose of this interface is to manage agent (that models a hardware or software device) names, communication capabilities and sets of attributes associated with agents. An implementation may map these methods to operations on existing directories or databases. Some implementations may choose to provide a read-only access to the agent information.

Data associated with an agent is captured in attributes associated with types. An implementation may map different type attributes to different underlying stores or directories.

The names of agents within a namespace must be unique.

This interface is meant for use by provisioning applications that establish and maintain agent names.

	<<Interface>>

IpPAMAgentManagement

	

	createAgent(agentName : in TpPAMFQName, agentTypes: in TpStringList, authToken : in TpPAMCredential) : void

deleteAgent(agentName : in TpPAMFQName, authToken : in TpPAMCredential) : void

isAgent(agentName : in TpPAMFQName, authToken : in TpPAMCredential) : TpBoolean

enableCapabilities (agentName : in TpPAMFQName, capabilities : in TpPAMCapabilityList, authToken : in TpPAMCredential) : void

disableCapabilities (agentName : in TpPAMFQName, capabilities : in TpPAMCapabilityList, authToken : in TpPAMCredential) : void

listEnabledCapabilities (agentName : in TpPAMFQName, authToken : in TpPAMCredential): TpPAMCapabilityList

listAllCapabilities (agentName : in TpPAMFQName, authToken : in TpPAMCredential): TpPAMCapabilityList

isCapableOf (agentName : in TpPAMFQName, capability : in TpPAMCapability, authToken : in TpPAMCredential) : TpBoolean

associateTypes(agentName : in TpPAMFQName, agentTypes: in TpStringList, authToken : in TpPAMCredential) : void

disassociateTypes(agentName: in TpPAMFQName, agentTypes : in TpStringList, authToken : in TpPAMCredential) : void

listTypesOfAgent(agentName : in TpPAMFQName, authToken : in TpPAMCredential) : TpStringList

hasType(agentName : in TpPAMFQName, typeName : in TpString, authToken : in TpPAMCredential) : TpBoolean

getAgentAttributes(agentName : in TpPAMFQName, agentType: in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : TpPAMAttributeList

setAgentAttributes(agentName : in TpPAMFQName, agentType: in TpString, attributes: in TpPAMAttributeList, authToken : in TpPAMCredential) : void

Method

associateTypes()

Associate an agent instance with the specified types.

Parameters

agentName : in TpPAMFQName

specifies the name of Agent.

agentTypes: in TpStringList

specifies the types of the Agent to be associated.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the specified agent does not exist

P_PAM_UNKNOWN_TYPE

indicates that a specified type name has not been defined as an agent type.

P_PAM_TYPE_ASSOCIATED

indicates that a named type has already been associated with the agent.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createAgent()

Create an agent initialized with the specified capabilities.

Parameters

agentName : in TpPAMFQName

specifies the name of Agent to be created.

agentTypes: in TpStringList

specifies the types of the Agent to be created. Can be an empty list.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_AGENT_EXISTS

indicates that an Agent with the agentName already exists.

P_PAM_UNKNOWN_TYPE

indicates that a specified type name has not been defined as an agent type..

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteAgent()

Delete the specified Agent and all related data from the system.

Parameters

agentName : in TpPAMFQName

specifies the name of Agent to be created.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

disableCapabilities()

Remove the specified capabilities from the Agent.

Parameters

agentName : in TpPAMFQName

specifies the Agent.

capabilities : in TpPAMCapabilityList

specifies the communication mode to be disabled.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_NO_CAPABILITY

indicates that the specified agent does not have the capability to be disabled
P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

disassociateTypes()

Remove the association of a type with an agent instance. The definition of the type itself remains unaffected and the types may continue to be associated with other agents.

Parameters

agentName : in TpPAMFQName

specifies the agent.

agentTypes : in TpStringList

specifies the names of the types to be removed.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the specified agent does not exist.

P_PAM_DISASSOCIATED_TYPE

indicates that one of the specified types is not associated with the named agent.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

Method

enableCapabilities()

Enable the specified capabilities of the agent.

Parameters

agentName : in TpPAMFQName

specifies the Agent.

capabilities : in TpPAMCapabilityList

specifies the capabilities to be enabled.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.
P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getAgentAttributes()

Return the attributes associated with the agent. If the type is not specified, all associated types are assumed.

Parameters

agentName : in TpPAMFQName

specifies the agent.

agentType : in TpString

specifies the type of interest. Is optional.
attributeNames : in TpStringList

list of attributes of interest. Can be an empty list.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

Return value contains the list of specified attributes and their values. If the attributes parameter is an empty list, all attributes in the named agent are returned.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named agent has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the named attributes is not part of the specified type.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

hasType()

Check if the specified agent has the named type associated with it.

Parameters

agentName : in TpPAMFQName

specifies the Agent to be checked.

typeName : in TpString

specfies the type to be checked for.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

Returns true if an agent with the specified name has the named type associated with it.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

isAgent()

Check if the specified agent exists.

Parameters

agentName : in TpPAMFQName

specifies the Agent to be checked.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

Returns true if an agent with the specified name exists, false otherwise

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

isCapableOf()

Check if an agent has a particular capability that is currently enabled.

Parameters

agentName : in TpPAMFQName

specifies the Agent to be checked.

capability : in TpPAMCapability

capability to be checked.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

Returns true if the agent has the specified capability, false otherwise.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAllCapabilities()

List the capabilities for the specified Agent.

Parameters

agentName : in TpPAMFQName

specifies the Agent whose capabilities are to be listed.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMCapabilityList

Returns the list of capabilities for the Agent. Returns an empty list if no capabilities exist for the agent.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listEnabledCapabilities()

List the enabled capabilities for the specified Agent.

Parameters

agentName : in TpPAMFQName

specifies the Agent whose capabilities are to be listed.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMCapabilityList

Returns the list of enabled capabilities for the Agent. Returns an empty list if no enabled capabilities exist for the agent.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listTypesOfAgent()

List the types associated with the specified agent.

Parameters

agentName : in TpPAMFQName

specifies the agent to be looked up.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpStringList

Returns the list containing all types associated with the specified agent. An empty list is returned if there are no types associated with the agent.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setAgentAttributes()

Modify the attributes associated with the named agent. The input may contain a subset of the attributes of the named type. Only the specified attributes will be modified and the rest will remain unchanged.

Parameters

agentName : in TpPAMFQName

specifies the agent.

agentType : in TpString

specifies the type of interest. Is optional.
attributes : in TpPAMAttributeList

contains the list of attributes and their values.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named agent has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTES

indicates that the specified attribute list contains attributes not part of the named type.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

7.4. Agent Asssignment Interface

The purpose of this interface is to manage the relationship between identities and the agents assigned to them. The identities inherit capabilities from the assignments of agents.

The implementation must maintain the integrity of the relationship between identities and agents across changes to both identities and agents. Implementations may map these methods to operations on existing directories and databases. Some implementations may provide a read-only access to this interface.

This interface is meant for use by provisioning applications that establish and maintain association of agents with identities.

	<<Interface>>

IpPAMAgentAssignment

	

	assignAgent (identity : in TpPAMFQName, agentName : in TpPAMFQName, authToken : in TpPAMCredential) : void

unassignAgent (identity : in TpPAMFQName, agentName : in TpPAMFQName, authToken : in TpPAMCredential) : void

listAssignedAgents (identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

listAssociatedIdentitiesOfAgent (agentName : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMFQNameList

listAssignedAgentsByCapability (identity : in TpPAMFQName, capability : in TpPAMCapability, authToken : in TpPAMCredential) : TpPAMFQNameList

listCapabilitiesOfIdentity (identity : in TpPAMFQName, authToken : in TpPAMCredential) : TpPAMCapabilityList

isIdentityCapableOf (identity : in TpPAMFQName, capability : in TpPAMCapability, authToken : in TpPAMCredential) : TpBoolean

Method

assignAgent()

Assign an existing agent to an existing identity.

Parameters

identity : in TpPAMFQName

specifies the identity to assign the agent to.

agentName : in TpPAMFQName

specifies the Agent.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

isIdentityCapableOf()

Check if an identity has the specified capability derived from one or more agents assigned to it.

Parameters

identity : in TpPAMFQName

specifies the identity of interest.

capability : in TpPAMCapability

identifies the capability to check for.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpBoolean

Returns true if the identity has this capability, false otherwise.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAssignedAgents()

List the Agents assigned to an identity.

Parameters

identity : in TpPAMFQName

specifies the identity of interest.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

Returns the list of agent names assigned to the identity. An empty list is returned if no agents are assigned to the identity.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAssignedAgentsByCapability()

List the Agents assigned to an identity that match the specified capability.

Parameters

identity : in TpPAMFQName

specifies the identity of interest.

capability : in TpPAMCapability

specifies the capability of interest.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

Returns the list of agent names with the specified capability. An empty list is returned no agents are found.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAssociatedIdentitiesOfAgent()

List the identities that have the specified agent assigned to them.

Parameters

agentName : in TpPAMFQName

specifies the Agent.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMFQNameList

the list of identities that have been assigned the specified agent. Empty list is returned if no identities have been assigned this agent.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listCapabilitiesOfIdentity()

List the capabilities of an identity that it derives from its assigned Agents.

Parameters

identity : in TpPAMFQName

specifies the identity of interest.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMCapabilityList

Returns the list of the identity’s capabilities. Returns an empty list if no capabilities exist.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

unassignAgent()

Unassign an agent from an existing identity. In effect, this deletes an existing relationship between an agent and an identity.

Parameters

identity : in TpPAMFQName

specifies the identity to assign the agent to.

agentName : in TpPAMFQName

specifies the Agent.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_ASSIGNMENT

nndicates that no assignment exists for this identity and agent

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

7.5. Identity Type Management Interface

This Section describes the programmatic interface to define the type schema for identities specifying the attributes associated with the type. These types can then be assigned to identities. PAM implementations may provide a set of pre-defined types. Identity type names and agent type names are in the same namespace and hence must be uniquely defined across both identities and agents. The attributes for identity types and agent types are in two different namespaces and hence an attribute name may be re-used with different characteristics for identities and agents.

	<<Interface>>

IpPAMIdentityTypeManagement

	

	createIdentityAttribute (pAttribute : in TpPAMAttributeDef, authToken : in TpPAMCredential) : void

deleteIdentityAttribute (attributeName : in TpString, authToken : in TpPAMCredential) : void

getIdentityAttributeDefinition (attributeName : in TpString, authToken : in TpPAMCredential) : TpPAMAttributeDef

listAllIdentityAttributes (authToken : in TpPAMCredential) : TpStringList

createIdentityType (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : void

deleteIdentityType (typeName : in TpString, authToken : in TpPAMCredential): void

listIdentityTypes (authToken : in TpPAMCredential) : TpStringList

addIdentityTypeAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

removeIdentityTypeAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

listIdentityTypeAttributes (typeName : in TpString, authToken : in TpPAMCredential) : TpStringList

Method

addIdentityTypeAttributes

Add attribute definitions to the schema of an identity type that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

list of attributes to be added to this type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_ATTRIBUTE_EXISTS

indicates that at least one of the named attributes already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createIdentityAttribute

Create a definition of an identity attribute to specify its name and type.

Parameters

pAttribute : in TpPAMAttributeDef

specifies the attribute to be created.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_ATTRIBUTE_EXISTS

indicates that the named attribute already exists.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createIdentityType

Specify a label as the name of an identity type.

Parameters

typeName : in TpString

specifies the name of the type to be created.

attributeNames : in TpStringList

specifies the list of attributes to be added.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_TYPE_EXISTS

indicates that the named type already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteIdentityAttribute

Delete the definition of an identity attribute.

Parameters

attributeName : in TpString

specifies the attribute to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteIdentityType

Delete a label as the name of an identity type. All identities that have this type are no longer associated with this type and consequently will no longer will have any attributes associated with this type.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getIdentityAttributeDefinition

Get the definition for the specified identity attribute.

Parameters

attributeName : in TpString

specifies the attribute.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpPAMAttributeDef

The definition of the specified attribute.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAllIdentityAttributes

List all known identity attributes.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of attribute names defined so far. An empty array if no attributes have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listIdentityTypeAttributes

List all attributes of an identity type.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of attribute names for the named type. An empty array if no attributes have been defined for this type.

Exceptions

PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listIdentityTypes

List all known identity types.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of known identity types. An empty array if no identity types have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

removeIdentityTypeAttributes

Delete attribute definitions from the schema of an identity type that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

specifies the list of attributes to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

PAM_UNKNOWN_ATTRIBUTE

indicates that a named attribute is not part of the profile.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

7.6. Agent Type Management Interface

This Section describes the programmatic interface to define the type schema for agents specifying the attributes associated with the type. These types can then be assigned to agents. PAM implementations may provide a set of pre-defined types. Identity type names and agent type names are in the same namespace and hence must be uniquely defined across both identities and agents. The attributes for identity types and agent types are in two different namespaces and hence an attribute name may be re-used with different characteristics for identities and agents.

	<<Interface>>

IpPAMAgentTypeManagement

	

	createAgentAttribute (pAttribute : in TpPAMAttributeDef, authToken : in TpPAMCredential) : void

deleteAgentAttribute (attributeName : in TpString, authToken : in TpPAMCredential) : void

getAgentAttributeDefinition (attributeName : in TpString, authToken : in TpPAMCredential) : TpPAMAttributeDef

listAllAgentAttributes (authToken : in TpPAMCredential) : TpStringList

createAgentType (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : void

deleteAgentType (typeName : in TpString, authToken : in TpPAMCredential): void

listAgentTypes (authToken : in TpPAMCredential) : TpStringList

addAgentTypeAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

removeAgentTypeAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

listAgentTypeAttributes (typeName : in TpString, authToken : in TpPAMCredential) : TpStringList

Method

addAgentTypeAttributes

Add attribute definitions to the schema of an Agent type that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

list of attributes to be added to this type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_ATTRIBUTE_EXISTS

indicates that at least one of the named attributes already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createAgentAttribute

Create a definition of an Agent attribute to specify its name and type.

Parameters

pAttribute : in TpAttributeDef

specifies the attribute to be created.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_ATTRIBUTE_EXISTS

indicates that the named attribute already exists.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createAgentType

Specify a label as the name of an Agent type.

Parameters

typeName : in TpString

specifies the name of the type to be created.

attributeNames : in TpStringList

specifies the list of attributes to be added.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_TYPE_EXISTS

indicates that the named type already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteAgentAttribute

Delete the definition of an Agent attribute.

Parameters

attributeName : in TpString

specifies the attribute to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteAgentType

Delete a label as the name of an Agent type. All identities that have this type are no longer associated with this type and consequently will no longer will have any attributes associated with this type.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getAgentAttributeDefinition

Get the definition for the specified Agent attribute.

Parameters

attributeName : in TpString

specifies the attribute.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpPAMAttributeDef

The definition of the specified attribute.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAllAgentAttributes

List all known Agent attributes.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of attribute names defined so far. An empty array if no attributes have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAgentTypeAttributes

List all attributes of an Agent type.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of attribute names for the named type. An empty array if no attributes have been defined for this type.

Exceptions

PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAgentTypes

List all known Agent types.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of known Agent types. An empty array if no Agent types have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

removeAgentTypeAttributes

Delete attribute definitions from the schema of an Agent type that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

specifies the list of attributes to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

PAM_UNKNOWN_ATTRIBUTE

indicates that a named attribute is not part of the profile.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

7.7. Capability Management Interface

This Section describes the programmatic interface to define capability names.

Capabilities are names that define a property of an agent for which presence data may exist. Examples are voice, IM, SMS, WAP, etc. Agents can be assigned capabilities. Identities inherit capabilities from agents but cannot be directly assigned capabilities. Each capability is defined with an associated set of attributes. The attributes for each capability exist in their own namespace and hence an attribute name may be re-used with different characteristics across capabilities.

	<<Interface>>

IpPAMCapabilityManagement

	

	createCapabilityAttribute (pAttribute : in TpPAMAttributeDef, authToken : in TpPAMCredential) : void

deleteCapabilityAttribute (attributeName : in TpString, authToken : in TpPAMCredential) : void

getCapabilityAttributeDefinition (attributeName : in TpString, authToken : in TpPAMCredential) : TpPAMAttributeDef

listAllCapabilityAttributes (authToken : in TpPAMCredential) : TpStringList

createCapability (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : void

deleteCapability (typeName : in TpString, authToken : in TpPAMCredential): void

listCapabilities (authToken : in TpPAMCredential) : TpStringList

addCapabilityAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

removeCapabilityAttributes (typeName : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential): void

listCapabilityAttributes (typeName : in TpString, authToken : in TpPAMCredential) : TpStringList

assignCapabilitiesToType (agentType : in TpString, capabilities : in TpPAMCapabilityList, authToken : in TpPAMCredential) : void

unassignCapabilitiesFromType (agentType : in TpString, capabilities : in TpPAMCapabilityList, authToken : in TpPAMCredential) : void

listCapabilitiesOfType (agentType : in TpString, authToken : in TpPAMCredential) : TpPAMCapabilityList

Method

addCapabilityAttributes

Add attribute definitions to the schema of a capability that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

list of attributes to be added to this type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_ATTRIBUTE_EXISTS

indicates that at least one of the named attributes already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

assignCapabilitiesToType()

Assign capabilities to agent type.

Parameters

agentType: in TpString

name of an agent type.

capabilities : in TpPAMCapabilityList

specifies the list of capabilities to be associated.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the specified type does not exist.

P_PAM_UNKNOWN_CAPABILITY

indicates that at least one of the specified capabilities has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createCapabilityAttribute

Create a definition of a Capability attribute to specify its name and type.

Parameters

pAttribute : in TpAttributeDef

specifies the attribute to be created.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_ATTRIBUTE_EXISTS

indicates that the named attribute already exists.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

createCapability

Specify a label as the name of a Capability type.

Parameters

typeName : in TpString

specifies the name of the type to be created.

attributeNames : in TpStringList

specifies the list of attributes to be added.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_TYPE_EXISTS

indicates that the named type already exists.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that at least one of the specified attributes has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteCapabilityAttribute

Delete the definition of a Capability attribute.

Parameters

attributeName : in TpString

specifies the attribute to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deleteCapability

Delete a label as the name of a Capability. All agents that have this type are no longer associated with this type and consequently will no longer will have any attributes associated with this type.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getCapabilityAttributeDefinition

Get the definition for the specified Capability attribute.

Parameters

attributeName : in TpString

specifies the attribute.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpPAMAttributeDef

The definition of the specified attribute.

Exceptions

P_PAM_UNKNOWN_ATTRIBUTE

indicates that the named attribute does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listAllCapabilityAttributes

List all known Capability attributes.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of attribute names defined so far. An empty array if no attributes have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listCapabilitiesOfType()

List capabilities assigned to an agent type.

Parameters

agentType : in TpString

name of an agent type.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMCapabilityList

containing the list of capabilities assigned to the agent type.

Exceptions

P_PAM_UNKNOWN_TYPE

indi indicates that the specified type does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listCapabilityAttributes

List all attributes of a capability.

Parameters

typeName : in TpString

specifies the name of the type.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

containing the list of attribute names for the named type. An empty array if no attributes have been defined for this type.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

listCapabilities

List all known Capability types.

Parameters

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpStringList

containing the list of known Capability types. An empty array if no Capability types have been defined.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

removeCapabilityAttributes

Delete attribute definitions from the schema of a Capability that has already been defined.

Parameters

typeName : in TpString

specifies the name of the type.

attributeNames : in TpStringList

specifies the list of attributes to be deleted.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the named type does not exist.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a named attribute is not part of the profile.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

unassignCapabilitiesFromType()

Unassign capabilities from an agent type.

Parameters

agentType: in TpString

name of an agent type.

capabilities : in TpPAMCapabilityList

specifies the list of capabilities to be disassociated.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_TYPE

indicates that the specified type does not exist.

P_PAM_UNKNOWN_CAPABILITY

indicates that at least one of the specified capabilities has not been defined.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

8. PAM Presence and Availability SCF

This service consists of the presence and availability query and update interfaces.

8.1. Presence and Availability Manager Interface

The purpose of this interface is to supply the various interfaces available in this service to the application and to provide the authentication credentials. This interface is the only discoverable interface from the framework.

All PAM methods use an authentication token as a parameter since the outcome of the operations may depend on the entity requesting the operation. To enable this, the getAuthToken() method is used to obtain an implementation dependent token. An application that has authenticated itself with the Parlay framework, can get an authentication token for itself. Alternatively, if the application is requesting PAM operations on behalf of multiple entities, authentication tokens may be requested for each such entity after providing any available data about the asker. These tokens can then be used repeatedly for operations within a session without further need to identify the asker.

	<<Interface>>

IpPAMPresenceAvailabilityManager

	

	getAuthToken (in askerData : in TpPAMDataList) : TpPAMCredential

obtainInterface(interfaceName: in TpString) : IpInterfaceRef

Method

getAuthToken()

Get an authentication token for access to the interface methods.

Parameters

askerData : in TpPAMDataList

specifies information about the asker. Can be an empty array.

Return Type

TpPAMCredential

is an implementation-dependent authentication credential that can be verified.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

obtainInterface()

Obtain available interfaces from the service. The valid parameters for this method can be obtained from the service property P_OBTAINABLE_INTERFACES
Parameters

interfaceName : in TpString

specifies the name of the required interface.

Return Type

IpInterfaceRef

Returns the requested interface.

Exceptions

P_PAM_UNAVAILABLE_INTERFACE

indicates that the specified interface does not exist or is unavailable.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

8.2. Identity Presence Interface

The purpose of this interface is to maintain the dynamic presence information of identity.

The underlying implementations may optimize the storage for this dynamic data rather than rely on a general-purpose directory or database when performance is an issue. Presence information for identities may be explicitly registered are may be implicitly derived from the underlying networks or presence information from agents associated with the identity.

This interface is meant for use by applications that register and/or maintain dynamic presence information associated with identities and accessible without the privacy or other controls established by availability preferences. These applications may not be aware of the name and the types of agents associated with the identity.

The presence information can be explicitly registered using the interface or the presence may come from information implicitly derived (e.g., using presence information of agents associated with the identity).

	<<Interface>>

IpPAMIdentityPresence

	

	setIdentityPresence (identity : in TpPAMFQName, identityType : in TpString, attributes : in TpPAMAttributeList, authToken : in TpPAMCredential) : void

setIdentityPresenceExpiration (identity : in TpPAMFQName, identityType : in TpString, attributeNames : in TpStringList, expiresIn: in TpPAMTimeInterval, authToken : in TpPAMCredential) : void

getIdentityPresence (identity : in TpPAMFQName, identityType : in TpString, attributeNames: in TpStringList, authToken : in TpPAMCredential) : TpPAMAttributeList

Method

getIdentityPresence()

Retrieve presence attributes associated with an identity.

Parameters

identity : in TpPAMFQName

specifies the identity.

identityType : in TpString

specifies the type of the identity.

attributeNames: in TpStringList

specifies the attributes of interest. Can be an empty list.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

Return value contains the requested attributes of the named capability. If the attributes parameter is an empty array, all attributes of the named profile are included.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named identity has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that one of the named attributes is not associated with the specified identity.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setIdentityPresence()

Set identity’s dynamic attributes.

Parameters

identity : in TpPAMFQName

specifies the identity.

identityType : in TpString

specifies the type of the identity.

attributes : in TpPAMAttributeList

specifies the attributes to set.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named identity has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that one of the named attributes is not associated with the specified identity.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setIdentityPresenceExpiration()

Set or reset the expiration of an identity’s named presence attributes. If the attributeNames parameter is an empty list, the expiration time of all attributes defined for the identity will have their expiration time changed

Parameters

identity : in TpPAMFQName

specifies the identity.

identityType : in TpString

specifies the type of the identity.
attributeNames: in TpStringList

specifies the names of the attributes. Can be an empty list.
expiresIn: in TpPAMTimeInterval

specifies the number of seconds until the attributes expire. A value of –1 indicates no expiration

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named identity has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a named attribute is not associated with the named capability.
P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

8.3. Availability Interface

The purpose of the interface is to

· Manage the preferences specified for the availability of an identity and, to

· Query for the availability of identities for specific capabilities.

· Query for information about identities.

Simple implementations may equate the availability of identities to presence of their agents with available status. More complex implementations may consider, in addition, the preferences specified for availability as well as the attributes of the entity asking for availability.

The queries for availability are done for a specified context. A context is a set of attributes describing the situation for which availability is requested. PAM specifies two pre-defined contexts – Communication and Location. The latter is used for the availability of the location information. The former is used for availability for a specific mode of communication. Applications and PAM implementations may extend and provide additional contexts such as availability at a particular location, availability for a specific mode of communication at a given location, etc. The context information also includes any information about the asker as may be provided by the asker.

The specification does not define the type and format of preferences. Implementations will decide what type of preference engines/computations to use and hence specify the types of preferences they can handle. Some, for example, may allow rules in some specific language, while some may allow for program fragments with certain interfaces to be deposited as individual preference computations.

In other words, the algorithm for availability computations is entirely up to the implementation and is transparent to the entities checking for availability.

	<<Interface>>

IpPAMAvailability

	

	getAvailability (identity : in TpPAMFQName, pContext: TpPAMContext, attributeNames: in TpStringList, authToken : in TpPAMCredential) : TpPAMAvailabilityProfileList

getPreference (identity : in TpPAMFQName, pContext : in TpPAMContext, authToken : in TpPAMCredential) : TpPAMPreference

setPreference (identity : in TpPAMFQName, pContext : in TpPAMContext, operation : in TpPAMPreferenceOp, newPreference: in TpPAMPreference, authToken : in TpPAMCredential) : void

Method

getAvailability()

Get the availability for an identity for a given context.

All contexts may optionally include an asker profile. Although PAM applications may decide what attributes to include in an asker profile, PAM implementations should not require such attributes to be present. The implementations should leave it to the availability computations to decide the availability based on the (partial) information provided.

It is also up to the availability computation to decide on the trustworthiness of the asker profile information based on the application, the credentials of the entity asking for availability and/or the credentials, if any, of the entity accessing the interface.

Parameters

identity : in TpPAMFQName

specifies the identity for which the availability is being requested.

pContext : in TpPAMContext

specifies the context for which the availability is requested.

attributeNames: in TpStringList

specifies the attributes of interest. Can be an empty list to indicate all attributes.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAvailabilityProfileList

Returns a value containing a list of attributes as available to the asker in the requested context. If no information is available to the asker an empty list is returned.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getPreference()

Get the availability preferences of an identity for the specified communication mode.

This method should be used in conjunction with the setPreference method. It is not intended for the caller to implement preference-handling capabilities outside of the server with this method. Rather, this method is provided to query an existing preference value, for use in updating the same preferences with the setPreference method.

Parameters

identity : in TpPAMFQName

s specifies the identity of interest.

pContext : in TpPAMContext

specifies the context for which the preferences are requested.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMPreference

Returns the preference for the named capability if previously specified for the identity. Is null if there are no preferences associated.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setPreference()

Set the availability preferences for the specified identity for the specified capability. If the identity is Null, the preference is set for all identities (if authorized to do so).

The existing preference will be modified based on the operation.

If the new preference is specified as Null for replace operation , any existing preferences for the specified context will be removed.

Parameters

identity : in TpPAMFQName

specifies the identity with which the preference will be associated.

pContext : in TpPAMContext

specifies the capability to which this preference applies.
operation : in TpPAMPreferenceOp

specifies the operation to be performed with the specified preference

newPreference: in TpPAMPreference

specifies the availability preference to add.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_IDENTITY

indicates that the Identity with the specified name does not exist.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

8.4. Application Preference Check Interface

The purpose of this interface is to provide methods to be called by the PAM service to check for access control or to compute availability using an implementation provided by an application. Instances of this interface are registered using the setPreference() method in the availability management interface.

	<<Interface>>

IpAppPAMPreferenceCheck

	

	allowAccess (identity : in TpPAMFQName, methodName : in TpString, askerData : in TpAttributeList) : TpBoolean

allowSubscription (identity : in TpPAMFQName, eventName : in TpPAMEventName, askerData : in TpAttributeList) : TpBoolean

computeAvailability (identity : in TpPAMFQName, pContext : in TpPAMContext, attributeNames: in TpStringList) : TpPAMAvailabilityProfileList

Method

allowAccess()

Check the access permission for the asker for the specified method.

Parameters

identity : in TpPAMFQName

specifies the identity for which the access is being requested.

methodName : in TpString

specifies the method being requested.

askerData: in TpAttributeList

specifies the asker.

Return Type

TpBoolean

Returns True if the access is allowed, false if denied.

Exceptions

P_PAM_FAILURE

Indicates that the operation failed at the application.

allowSubscription()

Check the access permission for the asker to register for the specified event.

Parameters

identity : in TpPAMFQName

specifies the identity for which the access is being requested.

eventName : in TpPAMEventName

specifies the event being registered to.

askerData: in TpAttributeList

specifies the asker.

Return Type

TpBoolean

Returns True if the subscription is allowed, false if denied.

Exceptions

P_PAM_FAILURE

Indicates that the operation failed at the application.

computeAvailability()

Compute the availability for an identity for a given context. The data provided is the same as the data provided for the getAvailability call. The application implementing this interface uses the identity presence interface to get the current presence data and maintains its own user preferences to compute the availability.

Parameters

identity : in TpPAMFQName

specifies the identity for which the availability is being requested.

pContext : in TpPAMContext

specifies the context for which the availability is requested.

attributeNames: in TpStringList

specifies the attributes of interest. Can be an empty list to indicate all attributes.

Return Type

TpPAMAvailabilityProfileList

Returns a value containing a list of attributes as available to the asker in the requested context. If no information is available to the asker an empty list is returned.

Exceptions

P_PAM_FAILURE

Indicates that the operation failed at the application.

8.5. Agent Presence Interface

The purpose of this interface is to maintain the dynamic presence information of agents.

The underlying implementations may optimize the storage for this dynamic data rather than rely on a general-purpose directory or database when performance is an issue. Agents may explicitly register the presence information or the presence information may be implicitly derived from the underlying networks.

The presence information is modeled through dynamic attributes. Sets of dynamic attributes can be defined per agent type (e.g., agent location, power status) or per agent capability (e.g., agent status for voice/messaging, communication address).

This interface is meant for use by applications that query and update agent presence information directly regardless of the identities to which the agent is assigned.

	<<Interface>>

IpPAMAgentPresence

	

	setAgentPresence (agent : in TpPAMFQName, agentType : in TpString, attributes : in TpPAMAttributeList, authToken : in TpPAMCredential) : void

setCapabilityPresence (agent : in TpPAMFQName, capability : in TpPAMCapability, attributes : in TpPAMAttributeList, authToken : in TpPAMCredential) : void

setAgentPresenceExpiration (agent : in TpPAMFQName, agentType : in TpString, attributeNames : in TpStringList, expiresIn: in TpPAMTimeInterval, authToken : in TpPAMCredential) : void

setCapabilityPresenceExpiration (agent : in TpPAMFQName, capability : in TpPAMCapability, attributeNames : in TpStringList, expiresIn: in TpPAMTimeInterval, authToken : in TpPAMCredential) : void

getAgentPresence (agent : in TpPAMFQName, agentType : in TpString, attributeNames : in TpStringList, authToken : in TpPAMCredential) : TpPAMAttributeList

getCapabilityPresence (agent : in TpPAMFQName, capability : in TpPAMCapability, attributeNames : in TpStringList, authToken : in TpPAMCredential) : TpPAMAttributeList

Method

getAgentPresence()

Retrieve named presence attributes for an agent.

Parameters

agent : in TpPAMFQName

specifies the agent.

agentType : in TpString

specifies the type of the agent.

attributeNames: in TpStringList

specifies the dynamic attributes of interest. Can be an empty array to indicate all dynamic attributes are to be retrieved.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

Return value contains the requested dynamic attributes associated with the specified agent. If the attributeNames parameter is an empty list, all dynamic attributes of the specified agent are included.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named agent has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that one of the named attributes is not associated with the specified agent.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

getCapabilityPresence()

Retrieve named presence attributes for a capability of an agent.

Parameters

agent : in TpPAMFQName

specifies the agent.

capability : in TpPAMCapability

specifies which capability of the agent for which attributes are desired.

attributeNames: in TpStringList

specifies the dynamic attributes of interest. Can be an empty array to indicate all dynamic attributes are to be retrieved.
authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

TpPAMAttributeList

Return value contains the requested dynamic attributes associated with the specified agent. If the attributeNames parameter is an empty list, all dynamic attributes of the specified agent are included.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_CAPABILITY

indicates the requested agent does not have the requested capability.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that one of the named attributes is not associated with the specified agent.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setAgentPresence()

Set presence attribute values for an agent.

Parameters

agent : in TpPAMFQName

specifies the agent.

agentType : in TpString

specifies the type of the agent.

attributes : in TpPAMAttributeList

specifies the dynamic attributes to set.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named agent has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a supplied attribute is not a dynamic attribute of the specified agent. May be returned if either the name and/or type of a supplied attribute do not match any dynamic attribute of the specified agent. No attributes are affected.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setCapabilityPresence()

Set presence attribute values for a set of capabilities of an agent.

Parameters

agent : in TpPAMFQName

specifies the agent.

capability : in TpPAMCapability

specifies which capability of the agent to set.

attributes : in TpPAMAttributeList

specifies the dynamic attributes to set.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_CAPABILITY

indicates that a supplied capability is not a capability of the requested agent. No attributes are affected.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a supplied attribute is not a dynamic attribute of the specified agent. May be returned if either the name and/or type of a supplied attribute do not match any dynamic attribute of the specified agent. No attributes are affected.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setAgentPresenceExpiration()

Set or reset the expiration of an agent’s named presence profile.

Parameters

agent : in TpPAMFQName

specifies the agent.

agentType : in TpString

specifies the type of the agent.

attributeNames: in TpStringList

specifies the names of the dynamic attributes. May be an empty array to indicate all dynamic attributes are to be affected.
expiresIn: in TpPAMTimeInterval

specifies the number of seconds until the attributes expire. A value of –1 indicates no expiration. A value of 0 indicates immediate expiration.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_UNKNOWN_TYPE

indicates that the named agent has not been associated with the named type.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a supplied attribute name is not a dynamic attribute of the specified agent. No attributes are affected.
P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

setCapabilityPresenceExpiration()

Set or reset the expiration of named presence attributes for a set of capabilities of an agent.

Parameters

agent : in TpPAMFQName

specifies the agent.

capability : in TpPAMCapability

specifies the type of the agent.

attributeNames: in TpStringList

specifies the names of the dynamic attributes. May be an empty array to indicate all dynamic attributes are to be affected.
expiresIn: in TpPAMTimeInterval

specifies the number of seconds until the attributes expire. A value of –1 indicates no expiration. A value of 0 indicates immediate expiration.

authToken : in TpPAMCredential

of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_UNKNOWN_AGENT

indicates that the Agent with the specified name does not exist.

P_PAM_NO_CAPABILITY

indicates that a supplied capability is not a capability of the requested agent. No attributes are affected.

P_PAM_UNKNOWN_ATTRIBUTE

indicates that a supplied attribute name is not a dynamic attribute of the specified agent. No attributes are affected.
P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.
9. PAM Event SCF

This service contains an interface for registering for notifications for events that occur within the PAM service.

9.1. Event Manager Interface

The purpose of this interface is to supply the various interfaces available in this service to the application and to provide the authentication credentials. This interface is the only discoverable interface from the framework.

All PAM methods use an authentication token as a parameter since the outcome of the operations may depend on the entity requesting the operation. To enable this, the getAuthToken() method is used to obtain an implementation dependent token. An application that has authenticated itself with the Parlay framework, can get an authentication token for itself. Alternatively, if the application is requesting PAM operations on behalf of multiple entities, authentication tokens may be requested for each such entity after providing any available data about the asker. These tokens can then be used repeatedly for operations within a session without further need to identify the asker.

	<<Interface>>

IpPAMEventManager

	

	getAuthToken (in askerData : in TpPAMDataList) : TpPAMCredential

obtainInterface(interfaceName: in TpString) : IpInterfaceRef

Method

getAuthToken()

Get an authentication token for access to the interface methods.

Parameters

askerData : in TpPAMDataList

specifies information about the asker. Can be an empty array.

Return Type

TpPAMCredential

is an implementation-dependent authentication credential that can be verified.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

obtainInterface()

Obtain available interfaces from the service. The valid parameters for this method can be obtained from the service property P_OBTAINABLE_INTERFACES
Parameters

interfaceName : in TpString

specifies the name of the required interface.

Return Type

IpInterfaceRef

Returns the requested interface.

Exceptions

P_PAM_UNAVAILABLE_INTERFACE

indicates that the specified interface does not exist or is unavailable.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

9.2. Event Registration Interface

The purpose of this interface is to manage the registrations of interest in events and the registration of client interfaces for subsequent notification. All notifications in this specification are to be sent after the corresponding event has occurred and are asynchronous. An application must first register a notification interface with the service. It can then register interest in one or more events for this interface.

A failure or a reset of a PAM implementation may result in a loss of all prior event and interface registrations. It is the responsibility of the client application to confirm the continued registration of the notification interface at regular intervals and re-register if necessary.

For security and privacy purposes, a registration for an event is allowed if and only if the supplied credentials during registration is sufficient to have allowed access to the information related to the event through one or more of the PAM interface methods.

	<<Interface>>

IpPAMEventRegistration

	

	isRegistered (clientID : in TpInt32, authToken : in TpPAMCredential): TpBoolean

registerAppInterface (appInterface : in IpInterface, authToken : in TpPAMCredential): TpInt32

registerForEvent (clientID : in TpInt32, event : in TpPAMEventInfo, authToken : in TpPAMCredential) : TpInt32

deregisterAppInterface (clientID : in TpInt32, authToken : in TpPAMCredential) : void

deregisterFromEvent (eventID : in TpInt32, authToken : in TpPAMCredential) : void

Method

deregisterAppInterface

Unregister a client application’s notification interface.

All registrations for events for this client registration are also removed

Parameters

clientID : in TpInt32

specifies the registration ID provided at registration.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_NOT_REGISTERED

indicating that the interface was not previously registered.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

deregisterFromEvent

Unregister a client application’s interest in an event.

Parameters

eventID : in TpInt32

specifies a prior event registration ID.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

void

No return value.

Exceptions

P_PAM_NOT_REGISTERED

indicating that the interface was not previously registered.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

isRegistered

Check if a client application interface is registered

Parameters

clientID : in TpInt32

specifies the registration ID provided at registration.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpBoolean

is True if the registration ID is still valid, False otherwise.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

registerAppInterface

Register a client application’s notification interface

Parameters

appInterface : in IpInterface

specifies the client notification interface.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpInt32

is an ID returned by the service that uniquely identifies this registration.

Exceptions

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

Method

registerForEvent

Register a client application’s interest in an event.

Parameters

clientID : in TpInt32

specifies the registration ID provided at registration.

event : in TpPAMEventInfo

specifies the event of interest.

authToken : in TpPAMCredential

Credential of the entity who wishes to do this operation.

Return Type

TpInt32

an ID returned by the service that uniquely identifies this registration for the event.

Exceptions

P_PAM_NOT_REGISTERED

indicating that the interface was not previously registered.

P_PAM_INVALID_CREDENTIAL

indicates that the credential presented is not recognized or insufficient for the operation.

P_PAM_NOT_SUPPORTED

implementation dependent status that indicates that this method is not supported by the implementation.

9.3. Application Notification Interface

This is the interface that a client application must implement and register with the Event Service in order to be notified of events.

	<<Interface>>

IpAppPAMEventNotification

	

	eventNotify (eventID : in TpInt32, eventInfo : in TpPAMNotificationInfo, authToken : in TpPAMCredential): void

Method

eventNotify

Notify the occurrence of an event. The implementations will not attempt to re-notify on failure.

Parameters

eventID : in TpInt32

specifies a prior event registration ID.

eventInfo : in TpPAMNotificationInfo

contains the data about the event that occurred.

authToken : in TpPAMCredential

Credential of the PAM implementation.

Return Type

void

No return value.

Exceptions

P_PAM_FAILURE

indicates that the notification was not successful.

10. Appendix

10.1. UML Models

10.1.1. Identity

[image: image2.png]
10.1.2. Agent

[image: image3.png]
10.2. Model

This Section describes a suggested model for Presence and Availability Management that has influenced the design of the specifications. The model embodies assumptions about the architecture in typical usage, the security and privacy issues, the types of clients or applications that will access PAM implementations, and the framework in which they do so.

Presence and Availability Management has dual roles. In one role, it acts as an abstraction layer (Fig. 1) that sits between

· The end-users who will manage their communication identities and availability,

· The communication services that will behave according to the wishes of the end-user, and

· The communication networks to which the end-user’s devices are attached and from which their status is to be obtained or inferred.

Here the goal is to “keep the end-user in the loop” i.e., to let the end-users manage their communication services as much as the service providers manage their subscribers. This role primarily determines the functionality of the specifications.

[image: image4.wmf]PAM

End-users

Communication

Services

Communication

Networks

Figure 2 “Keeping end-users in the loop”

In the second role, Presence and Availability Management provides the means for multiple administrative domains to share information about identity, presence and availability in controlled ways (Fig. 2). This sharing may occur for the purposes of allowing communications between end-users in multiple domains and/or for the purposes of allowing the information to be federated into a merged global address space. In either case, this role determines the security and privacy aspects of the specification design.

[image: image5.wmf]Enterprise #1

Enterprise #2

Network

A

Network

B

PAM

PAM

PAM

PAM

Figure 3 Information sharing via PAM interfaces

10.3. Architecture

There are several architectural scenarios for use of PAM depending on the participants being legacy systems or future systems or a combination of both. The least intrusive use of PAM is through an implementation of an abstraction layer over existing legacy systems to allow some limited management control for the end-user (Fig. 3). The limited benefits come from being able to use third-party end-user management software written for the standard specification. The legacy systems themselves are unaware of the PAM layer. Example applications include number translation schemes in telephony systems enhanced through PAM interfaces, LDAP enabled e-mail systems extended through PAM layer to provide dynamic and/or customized address information, etc.

[image: image6.wmf]Legacy Communication

System

PAM abstraction layer

Management

client

Figure 4 Abstraction over legacy systems

The next level of adoption comes from communication services or networks that already have some notion of identity, presence and/or availability, exporting this information through the PAM interface (Fig. 4). This allows third-party end-user management software written for the standard specification to manage across multiple communication systems on behalf of the user. As the communication services are already designed to take some of these notions into account, the end-user is able to customize the services to a larger extent than the previous scenario. Example applications include Instant Messaging, Email, etc.

[image: image7.wmf]Communication

Service A

Communication

Service B

Instant messaging,

E-mail, etc.

Management

client

PAM

PAM

Figure 5 Exporting from communication services

Maximum benefits from Presence and Availability Management comes in a scenario (Fig. 5) in which

· Communication networks export relevant information and device status through PAM interface,

· Communication services are written to consult PAM servers to affect communication handling, and

· End-user management systems written to PAM specifications allow end-users to specify policies and preferences for their communication capabilities.

· Any of the communication services (voice telephony, fax, e-mail, instant messaging, etc.) can potentially use this architecture.

[image: image8.wmf]Communication

network

Communication

service

Presence and Availability

Server

Management

client

Figure 6 PAM enabled communications

10.4. Levels of access

As described in earlier sections, the Presence and Availability Management platform can be used for a variety of purposes including

· Third-party communication management software for end-users.

· Single-point administration software for enterprises.

· Federating namespaces across multiple communication services and networks.

· Exporting enterprise-managed identity, presence and/or availability data for use by external communication services/devices.

· Exporting status and/or location data of devices from networks for use by communication services.

Not all methods in every interface are likely to be used in every context. For example, a simple communication device such as an instant messaging client can check for availability of an end-user using the availability interface but may not need the preference management methods. Communication management software for the end-user may manage the preferences for the user but would not require the user identity creation methods. Enterprise administration software or services installed on top of the platform may require access to all the methods in every interface.

While the interfaces defined in this specification are a minimal union of all the potential types of accesses, it is useful to recognize three categories of platform access primarily differentiated by the authentication and security requirements as described below. Unlike Parlay specifications, PAM specification does not partition the methods and interfaces into views for each type of access. Platform implementations that implement the access framework or define the access protocols are encouraged to define views for the three types of accesses and decide on the subset of methods supported in each view. PAM specification does not require that every method be supported in implementations. Consequently, software written for the platform must take into account the possibility that any method may return with a “not supported” status.

Briefly described below are the characteristics of the three major levels of accesses:

10.4.1. Application

Applications are independent, stand-alone software systems that access PAM implementations on a continuous basis possibly on behalf of multiple clients. Examples include PAM-compliant gateways, switches, messaging servers, address translation systems, enterprise management systems, etc. These applications are likely to be “always-on” and must be allowed to authenticate themselves only at startup of the applications. The applications are typically expected to be non-trivial and running on computing platforms that allow for heavyweight frameworks such as CORBA to be used for access to the interfaces.

10.4.2. Service

Services are software modules that extend or provide additional functionality to PAM implementations. They may run in the same process space as the PAM platform or may run remotely. It is up to the implementations to provide implementation-specific mechanisms for adding, using or managing such services. Examples of services include “buddy list” systems, identity authentication systems, etc.

10.4.3. Thin client

Independent software differentiated from applications in being relatively lightweight and potentially running on devices with minimal computing capabilities such as cellular phones or palm devices. The use of the PAM implementation by a thin client is expected to be infrequent and transitory. Consequently, authentication, when required, may need to happen as often as an individual method access. The PAM implementations need to provide lightweight, preferably message based access for such clients. The thin client access may not be limited to checks for presence and/or availability alone. They may provide some limited end-user preference management capabilities as well.

10.5. Use cases

This section gives some illustrative use cases of the different interfaces in this document. This list is not meant to be an exhaustive listing of all the possible use cases but rather an aid in understanding possible uses of the PAM interfaces.
10.5.1. Identity Management

1. Create an identity for John Smith (identity name) of type subscriber (identity type) with the following address information (a specific named profile for addresses).

2. Delete the identity for John Smith

3. Create an alias of Jsmith@company.com under the namespace of "myISP" (namespace created by the ISP with whom John has an acoount)

4. Delete the alias of Jsmith@company.com for John Smith

5. Create a group named “Project Manhattan” (group identity name) of type projects (identity type) with the following people in it – John, ... (group members)

6. Delete the group called “Project Manhattan”

7. Add John Smith to “Project Manhattan” Group

8. Remove John Smith from “Project Manhattan” Group

9. Is there a John Smith in the default namespace?

10. What is the address information for John Smith?

11. What are John Smith's aliases?

12. What groups does John Smith belong to?

13. Whose alias is Jsmith@myISP.com under the name space of "myISP"?

14. Who are the members of “Project Manhattan”?

10.5.2. Agent Management

1. Create an agent of type “mobile phone” with the ID 123456789 (agent name) and the following capabilities - WAP, Voice, SMS

2. Delete the agent with the ID 123456789

3. Add the capability "video conferencing" to the agent with id 123456789

4. Disable the capability "WAP" for the agent with id 123456789

5. Associate the agent with ID 123456789 with the agent type "GSM phone".

6. Is there an agent with ID 123456789?

7. What agent types are associated with the agent ID 123456789?

8. What is Agent with ID 123456789 capable of?

9. Is Agent with ID 123456789 capable of SMS?

10.5.3. Agent Assignment

1. John Smith now has the phone with ID 123456789

2. John Smith no longer has the phone with ID 123456789

3. What agents does John Smith have for instant messaging (capability)?

4. Is John Smith able to receive instant messages (capability)?

5. What all means can John Smith be communicated with?

6. Who is currently assigned to the phone with ID 123456789?

10.5.4. Agent Presence

1. Set agent status information (dynamic attributes) for mobile phone 123456789 for Instant Messaging with the following location information valid until removed.

2. Set the expiration time for the location information (dynamic attribute) for mobile phone 123456789

3. Update status information (a specific presence profile) of mobile phone 123456789 for Instant Messaging.

4. What is the call status of phone 123456789 for voice calls?

5. What is the location information about phone 123456789 for SMS?

6. What is the motion information of phone 123456789 for SMS?

10.5.5. Identity Presence

1. Set status information for John Smith for Instant Messaging valid until removed.

2. Set call status information of John Smith for voice calls.

3. Set location information of John Smith for Instant Messaging.

4. What is the call status of John Smith for voice calls?

5. What is the location information about John Smith for SMS?

6. What is the motion information of John Smith for SMS?

10.5.6. Availability

1. Store these preferences for John Smith for his voice calls.

2. Delete John Smith's preferences for voice calls.

3. What are John Smith's preferences for voice calls?

4. Is John Smith available to talk to Jane Doe on the phone?

5. How can Jane Doe contact John Smith via Instant Messaging?

6. What is John Smith's location information for Jane Doe?

	Author: The PAM Workgroup
	11 Feb 2002
	 Page 1 of 124

	This is a Draft Document of The Parlay Group, Inc.

_1019905035.doc

PAM

End-users

Communication

Services

Communication

Networks

_1019914317.doc

Communication Service A

Communication Service B

Instant messaging,

E-mail, etc.

Management client

PAM

PAM

_1020335779.doc

Legacy Communication System

PAM abstraction layer

Management client

_1019919217.doc

Communication network

Communication service

Presence and Availability Server

Management client

_1019914218.doc

Enterprise #1

Enterprise #2

Network A

Network B

PAM

PAM

PAM

PAM

_1007982465.ppt

Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

4

3

5

Not in scope of Parlay Phase 2

Telecom Network

Not in scope of Parlay Phase 2

2

6

Client

Application

Not in

 scope

of Parlay

Phase 2

