3GPP TSG_CN5 (Open Service Access – OSA)
N5-020136
Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
Ericsson

Title:
Forking support in Call control

Agenda Item:

Document for:
Decision

Category:
other

Work Item ID:
OSA2

Doc Summary:

Specs involved:
e.g. 29.198-04

1 Introduction

In document N5-011142, “OSA API MPCCS: SIP mapping open issues” from the Cancun meeting it was outlined that at the moment there is no good support in the call control SCF when the network applies forking. Below the complete text of the N5-011142 on this issue is copied.

“

PROBLEM:
In SIP the  forking mechanism may where a user is registered at more locations imply a destination search resulting in a call being setup from caller to multiple destinations (callees). The application may only be aware of a single destination, however  location service lookup may cause the call in fact to be set up to multiple parties.


For example an application has created a Terminating Call Leg and sends a routeReq to what it believes is a single destination. However, due to subsequent location service lookup SIP forking results in invitation to more than one called party. The application sees only one terminating leg, which may raise a number of questions, e.g. which called party does it represent? Should all called parties become visible to the application? 
The treatment of such additional SIP invitations have to be clarified for the MPCCS API.


SOLUTION:
This is for further study.
Different options could be considered like e.g.
a) making the SIP forking visible toward the application or 
b) means to restrict a call to 2-parties (avoid forking).


NOTE: For example the SIP Request-Disposition header field allows to specify caller preferences for how a proxy or redirect server should process a request. When a request(e.g. INVITE)is sent, it can optionally request certain handling at a server like e.g. “no-forking”. See Reference [3].

CONCLUSION:
Ambiguous behaviour for the MPCC API in case of SIP forking if this problem is not resolved.
Contributions invited.

“

Of the two suggested solutions, option b) would mean quite a limitation to the applicability of the Call Control API. Therefore, a better approach seems to look at how the Call Control API could be extended in order to support handling of forking.

2 API extensions necessary for forking support

A key point to understand about forking is that when a request is forked and leads to multiple successful answer events (200 OK), the originating User Agent only accepts one, usually the first (200 OK / ACK). Additional 200 OKs will either be rejected or a new call between the Originating UA and the 2nd terminating UA is created. It is thus not the case that the Originating UA will serve as a connection point having connections to multiple terminating UAs.

Obviously the first extension needed in the API is the ability to report an additional connection path that has been setup as a result of a route request. For this a new method on the AppCall should be defined to report that a new call leg has been created. This method will be invoked as a result of reception of the SIP 200 OK by the SCS and the creation of a new CallLeg object associated with the call in question. As a method with similar semantics is already available in the conference call control the idea is to reuse this method, partyJoined() from the Conference Call Control and move it to the Multi-Party call control. However, we would also like to rename the method to a name indicating more properly the semantics and we would like to propose partyJoinRequest.

The new method on the AppMultiPartyCall would look like:


partyJoinRequest(




callSessionID : in TpSessionID,




callLeg : in TpCallLegIdentifier,




eventInfo : in TpJoinEventInfo) : IpAppCallLegRef

At reception of the partyJoinRequest() the application can then decide whether to accept that party and use attachMedia() or deny that party and use release().

A sequence is show below.

[image: image1.wmf]SIP Proxy 

server

SCS

AS

A : UE

INVITE(C)

routeReq(C)

200 OK (C)

eventReportRes("ANSWER")

200 OK (C')

partyJoinRequest(C')

release(C')

INVITE(B)

BYE (C)

BYE (C')

200 OK (C'')

200 OK (C'')

partyJoinRequest(C'')

attachMedia(C'')

200 OK (C'')

C'' is allowed to 

join the session

C and C' are 

denied to join 

the session

INVITE(B)

reportNotification

release(C)


Furthermore, as it is possible to control whether forking is allowed or not (by indicating this in the SIP Request-Disposition header field) it is useful have also this control in the API. For this a new parameter of boolean type in the createCallLegAndRouteReq() and the routeReq() can be used. Another more backward compatible option  would be to have an indication in the TpCallLegConnectionProperties and only allow control of forking when the application uses the methods on the call leg.

routeReq (callLegSessionID : in TpSessionID, 

targetAddess : in TpAddress, 

originatingAddress : in TpAddress, 

appInfo : in TpCallAppInfoSet, 

connectionProperties : in TpCallLegConnectionProperties) : void

Finally, it is necessary to add a new Service Property that indicates whether this specific network supports forking or not.

3 Detailed changes in the specification

7.1.7
Use of the Redirected event 

[image: image2.wmf] : IpAppCallLeg

 : IpCallLeg

AppLogic

1: eventReportReq( ANSWER, REDIRECTED - NOTIFY )

2: routeReq(     )

3: eventReportRes( REDIRECTED )

4: eventReportRes( ANSWER )

The Call and the Leg 

have already been 

created.

 

1:
The application has already created the call and a call leg.  It places an event report request for the ANSWER and REDIRECTED events in NOTIFY mode. 

2:
The application routes the call leg. 

3:
The call is redirected within the network and the application is informed.  The new destination address is passed within the event.  The event is not disarmed, so subsequent redirections will also be reported.  Also, the same call leg is used so the application does not have to create a new one. 

4:
The call is answered at its new destination. 

7.1.8
Use of the partyJoinRequest 

 The following sequences shows a case where an application is invoked when user A initiates a session to user B. The application then reroutes the session to destination C. In this particular example, the network has forwarded the setup request to multiple destinations (C and C’) and both destinations answer the request. Next the application has to decide which of the destinations is actually put in the call together with A.
Note that for this particular case the Service Properties will indicate that only 2 parties can be in the call and that a CallLeg must be explicitly attached to a Call.
[image: image3.wmf]MPCallControlM

anager

AppMPCallContro

lManager

AppMPCall

A party : 

IpAppCallLeg

AppLogic

A party : 

IpCallLeg

C party : 

IpCallLeg

C' party : 

IpCallLeg

C' party : 

IpAppCallLeg

C party : 

IpAppCallLeg

MPCall

reportNotification

createCallLeg

new

new

routeReq()

eventReportRes("ANSWER")

partyJoinRequest(C')

forward

new

forward

attachMediaReq

release

new

createNotification

 

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager. 

2:
This message is used to indicate the application wants to be notified when user A initiates a session to user B. 

3:
User A has initiated a session to user B and the application is notified. 

4:
The message is forwarded to the application.

5:
The application creates a new call leg callback as the request has to be directed to C instead of to B.
6:
The application requests to create a new call leg for party C.
7:
The call leg object is created

8:
The application requests to route the call leg to destination C.

9:
An answer event from destination C is reported back to the application.
10:
Another destination (C’) reports it is interested in this session.

11:
The message is forwarded to the application

12:
A new call leg callback is created.

13:
The application decides to accept destination C’ to the call

14:
The application thus releases the connection to party C. In this particular case when the application does not release the additional Call Leg object, the object will be destroyed and this will be reported to the application via the connectionEnded() method.
7.2
Class Diagrams

7.3.4
Interface Class IpAppMultiPartyCall 
Inherits from: IpInterface 
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports. 
	<<Interface>>

IpAppMultiPartyCall

	

	getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : void

partyJoinRequest (callSessionID : in TpSessionID, callLeg : in TpCallLegIdentifier, eventInfo : in TpJoinEventInfo) : IpAppCallLegRef




Method

partyJoinRequest()

This synchronous method indicates that a new party (leg) intends to join the call session. This could be a result of e.g. a participant dialing into a conference or due to forking in a SIP based network.
The Leg will be in a detached state. The application can attach the party to the call by invoking attachMediaReq().
Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg. 

Parameters 

callSessionID : in TpSessionID

Specifies the session ID of the call that the party wants to join.
callLeg : in TpCallLegIdentifier

Specifies the interface and sessionID of the call leg that intents to join the call.
eventInfo : in TpJoinEventInfo

Specifies the address information of the party that wants to join the call.
Returns

IpAppCallLegRef

7.5
Multi-Party Call Control Service Properties

7.5.1
List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the GCC, from which the MPCC is an extension.

	Property
	Type
	Description

	P_MAX_CALLLEGS_PER_CALL
	INTEGER_SET
	Indicates how many parties can be in one call.

	P_UI_CALLLEG_BASED
	BOOLEAN_SET
	Value = TRUE : User interaction can be performed on leg level and a reference to a CallLeg object can be used in the IpUIManager.createUICall() operation.

Value = FALSE : No user interaction on leg level is supported.

	P_ROUTING_WITH_CALLLEG_OPERATIONS
	BOOLEAN_SET
	Value = TRUE : the atomic operations for routing a CallLeg are supported {IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(), IpCallLeg.route(), IpCallLeg.attachMediaReq()} 

Value = FALSE : the convenience function has to be used for routing a CallLeg.

	P_MEDIA_ATTACH_EXPLICIT
	BOOLEAN_SET
	Value = TRUE : the CallLeg shall be explicitly attached to a Call.

Value = FALSE : the CallLeg is automatically attached to a Call, no IpCallLeg.attachMediaReq() is needed when a party answers.

	P_FORKING_SUPPORT
	INTEGER_SET
	Indicates how forking is handled. Possible values are:

{P_FORKING_APPLICATION, 

P_FORKING_NETWORK, 

P_NO_FORKING}

P_NO_FORKING: The network does not support forking (this is the default).
P_FORKING_APPLICATION: Application receives multiple partyJoinRequests and has to deal with it.
P_FORKING_NETWORK: Network deals with forking, it is transparent for the application.


7.6.2
Multi-Party Call Control Data Definitions
IpCallLeg

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

	Sequence Element

Name
	Sequence Element

Type
	Description

	DestinationAddress
	TpAddress
	Contains the destination address of the call.

	OriginatingAddress
	TpAddress
	Contains the origination address of the call

	
	
	


TpJoinEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Join event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	OriginalDestinationAddress
	TpAddress

	RedirectingAddress
	TpAddress

	CallAppInfo
	TpCallAppInfoSet


TpNotificationRequested 

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

	Sequence Element

Name
	Sequence Element

Type

	AppCallNotificationRequest
	TpCallNotificationRequest

	AssignmentID
	TpInt32


TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object 

	Sequence Element

Name
	Sequence Element

Type
	Sequence Element

Description

	AttachMechanism
	TpCallLegAttachMechanism
	Defines how a CallLeg should be attached to the call.

	ForkingAllowed
	TpBoolean
	Defines if forking (forward the session setup request to multiple addresses) is allowed (ForkingAllowed = TRUE) or not (ForkingAllowed = FALSE).


� Contact information: Jørgen Dyst, Ericsson , Denmark, e-mail: jorgen.dyst@lmd.ericsson.se,�



