joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020078
Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
ftw (Sandford Bessler)
Title:
On Keeping Subscription Information in the Parlay Framework Consistent
Agenda Item:

Document for:
e.g. Decision, Discussion, Information

Category:
e. g. TS, TR, LS in/out, Report, other

Work Item ID:
e.g. OSA2

Doc Summary:

Specs involved:

Vienna, January 21st, 2002

Title: On Keeping Subscription Information in the Parlay Framework Consistent
Source: ftw
Ivan Gojmerac, E-mail: gojmerac@ftw.at

Klaus Umschaden, E-mail: klaus.umschaden@tuwien.ac.at

Sandford Bessler (Project Manager), E-mail: bessler@ftw.at

Abstract

In this contribution we explain why the exception messages, that are used with the method calls addSAGMembers() and assign() are not well suited for standardized communication between the enterprise operator and the OSA-Parlay framework. For ensuring full interoperability between different enterprise operators and different frameworks, we think that well structured exception messages are needed. Therefore we provide OSA-Parlay with a proposal for a change to the IDL, which defines new exceptions for these methods, as well as guidelines for their interpretation.
Introduction

Team members of the FTW A1 Project Service Platform and Interoperability have taken a very close look at the OSA-Parlay API definitions in the scope of a partial, but extensive implementation of the OSA Framework 3.0 API and the Generic Call Control Service API. The main objective of the project is to develop a service platform as an environment for the implementation of Internet-based telecom applications.

The ftw. Forschungszentrum Telekommunikation Wien (Telecommunications Research Center Vienna) was founded in 1999 and implements cooperation between science and industry following a new and challenging approach. Our partners are three departments from Vienna University of Technology, a number of well-known telecommunications companies (network operators and telecom manufacturers), some smaller enterprises and the Austrian Research Center Seibersdorf. You can find out more about us at http://www.ftw.at/index_en.htm .

The OSA-Parlay Framework-to-Enterprise Operator API specification defines 8 interfaces for the management of subscription information in the framework. These are the IpClientAppManagement, IpClientAppInfoQuery, IpServiceProfileManagement, IpServiceProfileInfoQuery, IpServiceContractManagement, IpServiceContractInfoQuery, IpEntOpAccountManagement and IpEntOpAccountInfoQuery interfaces. The interfaces define the standard interaction of the enterprise operator with the subscription part of the framework, i.e., they must entirely suffice for subscription management by the enterprise operator. After extensive research into the subscription part we came up with a number of issues and improvement proposals.

First we consider the subscription model of the OSA-Parlay 3.0 Framework API, in which the client application may be assigned to a service only through a single service profile at a particular moment in time. (It may actually be assigned through any number of non-concurrent service profiles. In this paper we consider only concurrent profiles, i.e. we analyze the system at a given moment in time.) Figure 1 shows the disallowed situation in which a client application is assigned to a service through two different SAGs, i.e., two different service profiles.

[image: image2.png]o

Figure 1

Assuring that the client application is assigned to a service only through a single service profile at any given time, requires extensive checks in the framework when two critical methods are called – the addSAGMembers() method from the IpClientAppManagement interface, and the assign() method from the IpServiceProfileManagement interface. The checks are presented in a high-level logical view of the system, and therefore our considerations are implementation independent.

Second, and closely tied with the consistency checks, we consider the related exceptions. If the framework indeed finds an inconsistency when performing the checks, it has to inform the caller of the method about the problem. We find that the currently defined exceptions do not suffice for meaningful, i.e., detailed enough descriptions of all inconsistencies which might occur in the framework as consequence of a method call.
1. Subscription Related Consistency Checks

We now present the solutions for two framework internal protocols for insuring data consistency, as described in the introduction. Notice in I.6. and II.5., that the format of the abstract exception message, i.e., the string containing the extra information is a plain textual description. We use such a format in this algorithm for reasons of easier understanding. Later we propose the introduction of new exception messages to the standard specification.

We now present the check protocols for the two method calls mentioned above with corresponding examples used for the construction of exception messages.

I)

void addSAGMembers (

in TpSagID sagID,

in TpClientAppIDList clientAppIDs

)

raises (TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID);
[image: image3.png]._ Allowed? targetSAG

Figure 2

1. If any of the client applications, which are to be added {CA1, CA2, CA3,…}, is already part of the new SAG, then throw an exception.

2. If the SAG is not assigned any service profile, then go to step 7.

3. Create a list of all service IDs of services associated with the targetSAG through service profiles. Let us call this list targetSAG_serviceIDList.

4. For each client application from the list parameter in the method call {CA1, CA2, CA3 …}, get the list of all SAGs where each one of the client applications is member. {CA1_SAGlist, CA2_SAGlist, CA3_SAGlist,…}.
5. For each list from the set {CA1_SAGlist, CA2_SAGlist, CA3_SAGlist,…}, create the list of associations between client applications and services. {CA1SAG1_serviceIDList, CA1SAG2_serviceIDList, CA1SAG3_serviceIDList, CA2SAG4_serviceIDList, CA2SAG5_serviceIDList,…}.
6. Make an intersection between each member of each list from the set { CA1SAG1_serviceIDList, CA1SAG2_serviceIDList, CA1SAG3_serviceIDList, CA2SAG4_serviceIDList, CA2SAG5_serviceIDList,…} and the targetSAG_serviceIDList. If the intersection is a non-empty set, then the addition of the client applications from the list cannot be made and an exception must be thrown. Find the service profile of the SAGs in conflict and throw an exception that gives a statement like: “Your method call has failed. The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1. The CA2 is already associated with service Service2 through SAG4 and service profile ProfileSAG4-Serv2. Therefore these client applications cannot be added to SAG targetSAG, which is also associated with service Service1 through service profile ProfiletargetSAG-Serv1, and with service Service2 through service profile ProfiletargetSAG-Serv2.”

7. If all previous steps are O.K., then add the list of client applications to the target SAG.

II)

void assign (

in TpSagID sagID,

in TpServiceProfileID serviceProfileID

)

raises (TpCommonExceptions, P_ACCESS_DENIED,

P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID);
[image: image6.png]Assignment
allowed?

targetSAG

Figure 3

1. If the Service Profile from the method call is already assigned to this or to another SAG, then throw an exception.

2. Get the service ID servID of the service associated with the Service Profile.

3. For each client application, which is member of the target SAG, get a list of all SAGs to which it is assigned to. {CA1_SAGlist, CA2_SAGlist, CA3_SAGlist,…}

4. For each list from {CA1_SAGlist, CA2_SAGlist, CA3_SAGlist,…} create the list of associations between client applications and services. {CA1SAG1_serviceIDList, CA1SAG2_serviceIDList, CA1SAG3_serviceIDList, CA2SAG4_serviceIDList, CA2SAG5_serviceIDList,…}

5. Make an intersection between each member of each list from the set {CA1SAG1_serviceIDList, CA1SAG2_serviceIDList, CA1SAG3_serviceIDList, CA2SAG4_serviceIDList, CA2SAG5_serviceIDList,…} and the servID. If the intersection is a non-empty set, then the assignment of the SAG to the service profile cannot be made and an exception must be thrown. Find the service profile of the SAG with the conflict and throw an exception that gives a statement like: “Your method call has failed. The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1. The CA2 is already associated with service Service1 through SAG4 and service profile ProfileSAG4-Serv1. Therefore the targetSAG (where CA1 and CA2 are also members) cannot be associated with service profile targetProfile.”

6. If all previous steps are O.K., then assign the SAG to the Service Profile.

2. Proposal for new Exception Messages
in the IDL of the OSA-Parlay Specification
As you can see from the two protocols above, it is of uttermost importance that the framework is enabled to throw meaningful exceptions, so that the enterprise operator can respond in an appropriate manner. Although one could imagine a system that throws messages, which exactly match the ones from the above examples, it would be very unwise to implement such a system. The reason is that these messages, contained in strings, would have to be parsed for information if we wanted to automate the exception handling in the domain of the enterprise operator. A much more simple approach is to construct a generic error message with a well defined data structure, because this way we can by convention insure perfect interoperability between enterprise operators and the framework.

Let us first take a look at the exception message paragraph from the first protocol, created for the addSAGMembers() method: “Your method call has failed. The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1. The CA2 is already associated with service Service2 through SAG4 and service profile ProfileSAG4-Serv2. Therefore these client applications cannot be added to SAG targetSAG, which is also associated with service Service1 through service profile ProfiletargetSAG-Serv1, and service Service2 through service profile ProfiletargetSAG-Serv2.”
The first error report in this message is that if the client application CA1 is added to the targetSAG, it will be associated with the service Service1 through two SAGs at the same time (SAG1 and the targetSAG), i.e., two service profiles (ProfileSAG1-Serv1 and ProfiletargetSAG-Serv1). The diagram in Figure 4 shows main entities from the first error, as well as their disallowed relationship (the parameters contained in the original addSAGMembers() method call are bold and underlined):

[image: image10.png]not allowed

Figure 4

The enterprise operator can now choose among several fixes, e.g., he can de-assign SAG1 and ProfileSAG1-Serv1, or he can de-assign the targetSAG and ProfiletargetSAG-Serv1, before adding the CA1 to the targetSAG. Another possibility is to remove the client applications, which cannot be added to the targetSAG, from the other SAGs where they are members before finally adding them to the targetSAG.
We have similar problems with the assign() method. The target SAG and target service profile cannot be assigned if some of the client applications from the target SAG are already associated with the same service through another SAG and service profile. Another diagram (Figure 5) shows the main entities from the exception message paragraph, as well as their disallowed relationship (the parameters contained in the original method call are bold and underlined):

[image: image12.png]not allowed

Figure 5

This time the enterprise operator can, e.g., de-assign SAG1 and ProfileSAG1-Serv1 (and all other SAGs which contain client applications in conflict and their service profiles), or he can make sure that the exception generating client applications are members of only one SAG. (In our example, the enterprise operator can remove CA1 from SAG1.) The enterprise operator can also choose to quit the assignment of the targetSAG and targetProfile.

2.1 IDL Change Proposal

As a consequence of all the deficiencies mentioned above, we propose the following change to the IDL of the Parlay-OSA Framework API, which would provide standardized error messages for subscription.

First, we propose the creation of the following common structure, used both for the addSAGMembers() and the assign() method:

struct TpSagProfilePair {

TpSagID Sag;

TpServiceProfileID ServiceProfile;

};

In the next two chapters we work out the concrete exceptions for the method calls addSAGMembers() and assign().
2.1.1
Constructing the Exception for the
addSAGMembers() Method Call

The exception for the addSAGMembers() method call will be constructed like this:

struct TpAddSagMembersConflict {

TpClientAppID ClientApplication;

TpSagProfilePair ConflictSagProfilePair;
// e.g, SAG1 and ProfileSAG1-Serv1
TpSagProfilePair TargetSagProfilePair;
// e.g., targetSAG and ProfiletargetSAG-Serv1
TpServiceID Service;

};

typedef sequence < TpAddSagMembersConflict > TpAddSagMembersConflictList;

Finally, we build our exception for the addSAGMembers() method.

exception P_ADD_SAG_MEMBERS_EXCEPTION {

TpAddSagMembersConflictList AddSagMembersConflicts;

};

As you can see from the IDL, we define a new structure called TpAddSAGMembersConflict, which consists of two IDs, i.e., the client application ID, the service ID, and two SAG-service profile pairs. The first pair provides information about the SAG in which the client application is already member and the belonging service profile for the particular service. The second pair provides information about the target SAG and its belonging service profile for the particular service. Then we define a sequence of TpAddSAGMembersConflict structures, which we call TpAddSAGMembersConflictList. Finally, we define the new exception, which we call the P_ADD_SAG_MEMBERS_EXCEPTION.

The question is: How do we interpret such an exception message?
In order to answer this question, let us first take a look at the exception message from the protocol: “Your method call has failed. The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1. The CA2 is already associated with service Service2 through SAG4 and service profile ProfileSAG4-Serv2. Therefore these client applications cannot be added to SAG targetSAG, which is also associated with service Service1 through service profile ProfiletargetSAG-Serv1, and with service Service2 through service profile ProfiletargetSAG-Serv2.”. You can immediately see that the subscription entities always appear in the same order, and therefore we can interpret the structure

SAG1

 (--------(
ProfileSAG1-Serv1

CA1

 Service1

targetSAG
(--------(
ProfiletargetSAG-Serv1
like: “The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1.” Each exception message possibly contains a list of such error statements, which are needed by the enterprise operator for normal administration of the system.

2.1.2 Constructing the Exception
for the assign() Method Call

A comparison of the exception message paragraph from the first (addSAGMembers) and the second (assign) protocol, you can easily see that they are structurally and semantically almost identical. Therefore we can construct the exception message for the assign() method similar to the exception message for the addSAGMembers() method.

We construct this exception like this:

struct TpAssignSagToServiceProfileConflict {

TpClientAppID ClientApplication;

TpSagProfilePair ConflictSagProfilePair;
// e.g, SAG1 and ProfileSAG1-Serv1

TpServiceID Service;

};

typedef sequence < TpAssignSagToServiceProfileConflict >

TpAssignSagToServiceProfileConflictList;

Finally, we build our exception for the assign() method.

exception P_ASSIGN_SAG_TO_SERVICE_PROFILE_EXCEPTION {

TpAssignSagToServiceProfileConflictList AssignConflicts;

};

How do we interpret this exception message? The interpretation is the same as with the exception for the addSAGMembers() method, except for the difference that the message does not contain the target SAG and its associated service profile, because both entities are being handed over by the enterprise operator as parameters of the method call and are therefore well known. Let us once again take a look at the exception string from the protocol: “Your method call has failed. The CA1 is already associated with service Service1 through SAG1 and service profile ProfileSAG1-Serv1. The CA2 is already associated with service Service1 through SAG2 and service profile ProfileSAG4-Serv1. Therefore the targetSAG (where CA1 and CA2 are also members) cannot be associated with targetProfile.” We basically have a list of following structures,

CA1

SAG1
 (--------(
ProfileSAG1-Serv1
Service1
which enable the framework to throw well defined exception messages to the enterprise operator.

1
1

