joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020076

Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
ftw (Joachim Zeiss)
Title:
Administration and Maintenance Interfaces
Agenda Item:

Document for:
e.g. Decision, Discussion, Information

Category:
e. g. TS, TR, LS in/out, Report, other

Work Item ID:
e.g. OSA2

Doc Summary:

Specs involved:

In accordance with requirements in section 3.2.4 in document N5-011133 we see the demand for a servicetype registration interface between service supplier and framework. Furthermore, we would like to design a new integrity management interface for the life cycle manager and discuss some minor access management additions.

1.1 Service Type Registration

The IpFwServiceTypeRegistration interface should be standardized as already outlined in Parlay 2.1. This interface then could be accessible not only by the framework administrator but as well for trusted service suppliers to introduce service types required by their services but not present on the framework. For details please refer to figure 1.

Additionally, service type ownership needs to be introduced so that each service supplier could manipulate only the service types it owns. Service types introduced to the framework should be tied to the parlay domain ID by which the service type has been introduced.

According to this ownership concept service types of supplier A should be under controlled access for supplier B, i.e. except of the framework administrator other parties should only have read access to service types owned by a service supplier.

[image: image1.wmf]IpFwServiceTypeRegistration

registerServiceType(serviceTypeName : in TpServiceTypeName, serviceTypeDescription : in TpServiceTypeDescription) : void

removeServiceType(serviceTypeName : in TpServiceTypeName) : void

describeServiceType(serviceTypeName : in TpServiceTypeName) : TpServiceTypeDescription

listServiceTypes() : TpServiceTypeNameList

enableServiceType(serviceTypeName : in TpServiceTypeName) : void

disableServiceType(serviceTypeName : in TpServiceTypeName) : void

(from service_registration)

<<Interface>>


Figure 1: IpFwServiceTypeRegistration definition

Service type registration listing and removal can seamlessly be implemented whereas enabling and disabling service type implications on their sub types need to be discussed. Given that a service type is behaving as a super type towards one or more other service types enabling/disabling of that type could:

1. enable/disable all sub types recursively

2. show/hide only the service type properties to/from the sub type

Option 1 implies certain ambiguities if one of many super types of the same service type would be enabled/disabled. In that scenario, a service type could only become available if all of its super types are enabled. This multiple inheritance scenario could lead to unexpected side effects. Best would be to give up the multiple service type inheritance architecture for the benefit of a clean and predictable type tree.

Option 2 could have huge impacts on services which have been registered under the constraints of certain service properties. If those properties would be hidden, the service would run under a context which has not been agreed on.

Therefore, we conclude that opening the framework towards the service suppliers for service type registration should be in conjunction with reducing the service type hierarchy to a single inheritance tree.

1.2 Service Maintenance and enhanced Lifecycle Management

Regarding service administration additional means to manage availability and connection and life cycle management integrity are required. Our investigations on framework usability came to the conclusion that maintenance of lifecycle management is essential for service deployment and usage.

Re-issuing the lifecycle managers reference for a given service ID should be possible. This would make the usage of a service referenced by a framework chosen service ID transparent to the client. Republishing a service under the same service ID would become possible. This is conceivable for scenarios of bug fix updates, factory switching during hardware downtime or software updates not requiring service property changes.

To support administrational work done by service deployment tools querying a lifecycle managers interface reference on the framework should be possible. For those operations ownership information needs to be stored against the lifecycle manager on the framework.

A service can be managed via integrity management a limited set of maintenance functions must be possible for the life cycle manager as well. Therefore, we suggest to introduce a new interface IpFwLCMIntegrity as depicted in figure 3.

[image: image2.wmf]IpFwLCMIntegrity

resetLCMReference(serviceInstance : TpServiceInstanceID, manager : IpServiceInstanceLifecycleManager) : void

queryLCMReference(serviceInstance : TpServiceInstanceID) : IpServiceInstanceLifecycleManage

(from integrity)

<<Interface>>


Figure 3: Definition of new integritey interface IpFwLCMIntegrity

Furthermore, the framework administrator should be allowed to use the registration and discovery interfaces on all registered services so that he could override all steps performed by the service supplier. The service supplier, in turn, needs to be informed of any override actions performed on its services. The lifecycle manager could be enhanced appropriately.

1.3 Access Maintenance

A mechanism to subscribe the usage of a particular parlay interface should be introduced. The access interfaces of the framework could be enhanced to hold two new methods for subscribing and unsubscribing interfaces.

[image: image3.wmf]IpAccess

obtainInterface(interfaceName : in TpInterfaceName) : IpInterface

obtainInterfaceWithCallback(interfaceName : in TpInterfaceName, clientInterface : in IpInterface) : IpInterface

endAccess(endAccessProperties : in TpEndAccessProperties) : void

listInterfaces() : TpInterfaceNameList

releaseInterface(interfaceName : in TpInterfaceName) : void

subscribeInterface(interfaceName : in TpInterfaceName) : void

unsubscribeInterface(interfaceNAme : in TpInterfaceName) : void

(from trust_and_security)

<<Interface>>


Figure 2: Changed version of the IPAccess interface





