Page 1



3GPP TSG_CN5 (Open Service Access – OSA)
N5-020056

Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
Koen Schilders (Ericsson), Koen.Schilders@eln.ericsson.se
Title:
Support for Distributed Applications
Agenda Item:
5 (Technical Discussion OSA Version 2)

Document for:
Discussion

Category:
other

Work Item ID:
OSA2

Doc Summary:
This contribution proposes an extension to OSA to support distributed applications.

Specs involved:
29.198-04, 29.198-05, 29.198-08, and 29.198-11

Introduction

In principle it is possible with the current OSA/Parlay APIs to distribute notifications over several application instances that could be deployed on different servers. In this case, each application instance requests it’s own set of notifications and specifies his private callback interface. Although this mechanism is not flexible (notifications are always and only sent to the application instance that requested them) it allows for distributing notifications over multiple application instances.

For Parlay V4/OSA R5 the request for notifications can also be provisioned from within the Home Environment (network operator). When in this case notifications need to be distributed over multiple application instances, the operator must have a means to link notifications to application instances. This could be achieved by entering the IORs of the application instances (callback interfaces) during provisioning, which would require a (proprietary) subscription mechanism. Besides the fact that it complicates the task of the operator (he has to deal with abstract things like IORs), it still has the same level of flexibility as described above for Parlay V3/OSA R4.

Therefore, an extension to Parlay/OSA is needed that:

(1) offers flexibility, meaning that there is no fixed mapping between a notification and corresponding callback interface;

(2) is transparent to the operator, meaning that it requires the operator only to set triggers;

(3) is backward compatible with Parlay V3/OSA R4.

Proposed Changes

When a request for notifications is created, a callback interface (that corresponds to the created notifications) is specified. The following situations can occur:

· An initial callback is specified. The same notification has not been created already with a different callback specified. The callback interface is used for reporting notifications.

· NULL is specified as callbak interface. The default callback interface (specified with setCallback) is used for reporting notifications.

· The same notification request is created for the second time, but a different callback interface is specified. This second callback interface is used for reporting notifications when the primary interface fails (e.g. due to overload or failure).

The proposed solution consists of additional methods in the Service Manager that offer the possibility to add and remove call-back interfaces:

· addCallback()
Add an additional callback interface to the list of available call-back interfaces.

· deleteCallback()
Remove a callback from the list of available call-back interfaces.

An application can register multiple callback interfaces. If done so, the operator provisioned notification requests are spread over the available callback interfaces.

To guarantee backward compatibility, the additional callbacks added with addCallback() are only used as alternatives for the primary callback. Only when (one of the) primary callback(s) fail(s), the backup callback is used. The standard will not specify if, in case the primary callback fails only the backup interface or also the other primary interfaces are used.
It is currently outside the scope of Parlay/OSA to specify how notifications are distributed over the available callback interfaces.

Impact to the Call Control SCF (29.198-04 v4.0.0)

7.3.1
Interface Class IpMultiPartyCallControlManager

<<Interface>>

IpMultiPartyCallControlManager



createCall (appCall : in IpAppMultiPartyCallRef, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : TpResult

getNotification (notificationsRequested : out TpNotificationRequestedSetRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

addCallback (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, assignmentID : out TpAssignmentIDRef) : TpResult

deleteCallback (assignmentID : in TpAssignmentID) : TpResult


Method

addCallback()

This method is used to add a callback that is used for distribution of notification events. The primary callback (specified in createNotification or setCallback) and the callbacks added with this metod are used for distributing notifications.
Parameters 

appCallControlmanager : in IpAppMultiPartyCallControlManagerRef

Specifies the additional callback interface.

assignmentID : out TpAssignmentIDRef

Specifies the assignment ID for additiona of the callback. The application can use this assigment ID to delete the callback later on.
Raises

TpCommonExceptions
Method

deleteCallback()

This method is used to delete a previous added callback that was used for distribution of notification events.

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignment ID that was returned when the callback was added (using addCallback).
Raises

TpCommonExceptions
Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification(). In case the application is interested in other events during the context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the eventReportReq() method on the call leg object. The application will get access to the call object when it receives thye reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800. 

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
If the same application added callbacks (using addCallback), these will be used together with the provided callback (or in case this is NULL the callback provided with setCallback) to distribute notifications.
 In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback(). 

Parameters 

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination. 
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.
Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
Impact to the Generic User Interaction SCF (29.198-05 v4.2.0)
8.1 Interface Class IpUIManager

<<Interface>>

IpUIManager



createUI (appUI : in IpAppUIRef, userAddress : in TpAddress) : TpUIIdentifier

createUICall (appUI : in IpAppUICallRef, uiTargetObject : in TpUITargetObject) : TpUICallIdentifier

createNotification (appUIManager : in IpAppUIManagerRef, eventCriteria : in TpUIEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, evenCriteria : in TpUIEventCriteria) : void

getNotification () : TpUIEventCriteriaResultSet
addCallback (appUIManager : in IpAppUIManagerRef ) : TpAssignmentID)

deleteCallback (assignmentID : in TpAssignmentID) : void


Method

addCallback()

This method is used to add a callback that is used for distribution of notification events. The primary callback (specified in createNotification or setCallback) and the callbacks added with this metod are used for distributing notifications.
Returns: assignmentID

Specifies the assignment ID for additiona of the callback. The application can use this assigment ID to delete the callback later on.
Parameters 

appUIManager : in IpAppUIManagerRef

Specifies the additional callback interface.
Returns
TpAssignmentID

Raises

TpCommonExceptions
Method

deleteCallback()

This method is used to delete a previous added callback that was used for distribution of notification events.

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignment ID that was returned when the callback was added (using addCallback).
Raises

TpCommonExceptions
Method

createNotification()

This method is used by the application to install specified notification criteria, for which the reporting is implicitly activated. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same servicecode is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

If the same application added callbacks (using addCallback), these will be used together with the provided callback (or in case this is NULL the callback provided with setCallback) to distribute notifications.

Returns: assignmentID 

Specifies the ID assigned by the generic user interaction manager interface for this newly installed notification criteria. 

Parameters

appUIManager : in IpAppUIManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. 
eventCriteria : in TpUIEventCriteria

Specifies the event specific criteria used by the application to define the event required, like user address and service code.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_CRITERIA
Impact to the Data Session Control SCF (29.198-08 v4.2.0)
8.4 Interface Class IpDataSessionControlManager

<<Interface>>

IpDataSessionControlManager



createNotification (appDataSessionControlManager : in IpAppDataSessionControlManagerRef, eventCriteria : in TpDataSessionEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpDataSessionEventCriteria) : void

getNotification () : TpDataSessionEventCriteria 

addCallback (appDataSessionControlManager : in IpAppDataSessionControlManagerRef ) : TpAssignmentID)

deleteCallback (assignmentID : in TpAssignmentID) : void



Method

addCallback()

This method is used to add a callback that is used for distribution of notification events. The primary callback (specified in createNotification or setCallback) and the callbacks added with this metod are used for distributing notifications.

Returns: assignmentID

Specifies the assignment ID for additiona of the callback. The application can use this assigment ID to delete the callback later on.
Parameters 

appDataSessionControlmanager : in IpAppDataSessionControlManagerRef

Specifies the additional callback interface.

Returns
TpAssignmentID

Raises

TpCommonExceptions
Method

deleteCallback()

This method is used to delete a previous added callback that was used for distribution of notification events.

Parameters 

assignmentID : in TpAssignmentID

Specifies the assignment ID that was returned when the callback was added (using addCallback).
Raises

TpCommonExceptions




CR page 1

