3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #16, Hong Kong, 4 – 8 February 2002
N5-020053

Source:
AePONA, eamonn.murray@aepona.com
Title:
Inter-dependence of UI and Call Control
Agenda Item:

Document for:
Discussion

Category:

Work Item ID:
OSA1
Doc Summary:
Clarification on the interdependence of Call-based User Interactions and Call Control
Specs involved:
120070_4 and 120070_5
This document is a follow on contribution to document N5-011168 presented during CN5#16 in Cancun, and a subsequent conference call held between participant members of the joint group that have expressed an interest in addressing the issue. (The ‘special interest group’ as known, consists of representatives from AePONA, Lucent, Ericsson, Nokia and Telcordia.) The decision of the conference call was that further investigation of option 3 as presented in N5-011168 was to be undertaken, and the outcome of this process would determine whether it would be necessary to progress further options. This approach was chosen as it was agreed that option 3 would result in minimal changes to existing specifications, whereas the alternatives could result in greater rework to the OSA APIs.

For clarification the 3 original suggestions presented in N5-011168 are repeated below to aid the reader:

There seem to be a number of ways forward: -

1. Integrate Call-based User Interaction into Call Control.

Remove the Call User interaction service completely and fully integrate with existing call control service models. This could be viewed as a similar approach to integrating core call related charging functionality within the call control service itself. There would be resulting additional states or substates in order to define the correct behaviour within the call or call leg and how the user interaction occurs as part of this. There is a danger that this further complicates the call control models, more tightly coupling them to the underlying networks. For example the mappings to INAP and CAP are reasonably clearly understood and there is a danger that the model becomes more tightly coupled to IN. Also, how would such a combined call model be mapped to SiP, can the INFO method be used to support User Interaction during a SiP call?

2. Maintain service separation and define an interface between UI and CC.

This implies that the UI Call instance acts as a Client App to the CC instance, which violates the 1-2-1 mapping between App and Service Instance and multiple points of control of the call. It would also imply all of the procedures for signing service agreements, etc. The new interface would also basically be the same as IpUICall so you might as well integrate this into CC and cut out the “middle man”. Furthermore there will be more than one interface required, as the UICall may relate to IpCall, IpMultiPartyCall or IpCallLeg. In addition, as in the single service model in 1 above, the state models for the ‘call’ objects would require similar levels of modification in order to tightly define the behaviour of the call and application during the user interaction process, and ensure that graceful return of control of the call is handed off to the application.

3. Maintain existing separation between UI and CC, define the use and behaviour of the Call Object Reference and application API.

This potential solution maintains the existing logical and possibly physical separation of the call control and call user interaction services. However by defining how the Call User Interaction service is to use the Call object reference (associated with IpCall, IpMultiPartyCall,IpCallLeg) as an index to control the current state or operation of the call within the network, little or no modification to the current services is required. However if a reference understood by one service is to be used by another, then a common network transport protocol between the two services is implied, and thus the service must be sourced from the same vendor. In addition, if minimal change is applied to the existing state models further specification on behaviour and exceptions must as a minimum be provided in order to ensure that applications are portable between vendors. For example if the user interaction is in progress at a network level, attempts to invoke call control functionality must be clearly handled (and vice versa).

The remainder of this contribution only considers option 3 above:

Considering the current GCCS IpCall STD

[image: image1.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state No Parties and Finished, a timer

should prevent the object from occupuing

resources.

Upon expiry of this timer, callEnded() should

be invoked with a release cause of 102

(Recovery on timer expiry). In case when no

IpAppCall is available on which to invoke

callEnded(), callAborted() shall be invoked

on the IpAppCallControlManager as this is

an abnormal termination

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

superviseCallReq

setAdviceOfCharge

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"call supervision event"^superviseCallRes

"network event received for which was monitored[routeRes]

getCallInfoReq

"answer"

"connection to called party

unsuccessful"[monitor mode = interrupt]

^routeRes

"routing aborted or invalid address" ^routeErr

"disconnect from called party"[monitor mode =

interrupt] ^routeRes, getCallInfoRes,

superviseCallRes

routeReq

IpAppCallControlManager.callEventNotify

setCallChargePlan

Figure : Application view on the IpCall object for 3GPP

There are no existing interactions identified between this IpCall STD and the associated IpUICall STD presented below. The existing specifications state that in order to support IpUICall it must be used in association with another service, currently one of the flavours of Call Control. The association between the two STDs is currently facilitated through the use of the uiTargetObject field being populated with a valid reference to the call/call-leg, when the application invokes the createUICall method on the IpUICallManager interface.

In considering the model above, call related user interaction applies when the call is currently in the ‘1-party in call’ state. When call user interaction is invoked by the application, clearly the existing call model cannot be guaranteed. At a minimum, additional behavioural information supplemented possibly with additional exceptions is required to prevent applications from invalid use of the IpCall API during active Call User interaction. For example all methods currently supported in the 1-party in call state, getCallInfoReq, setCallChargePlan, setAdviceOfCharge, superviseCallReq, routeReq, cannot be supported until the Call user interaction is completed. It is suggested that this is clearly described in a CallUserInteraction paragraph in the discussion on the IpCall STD, and that an additional exception P_CALL_UI_IN_PROGRESS is added to these methods?

Considering the existing IpCallUI STD:

[image: image2.wmf]Active

Release

Pending

Finished

IpUIManager.createUICall

release

abortActionReq / cancel the user interaction

abortActionReq[not the final request] / cancel the

user interaction

Already requested announcements

will continue, even when

application releases the object.

In state Finished a timer mechanism

should prevent that the object keeps

occupying resources. In case the timer

expires, the object should be destroyed

and userInteractionFaultDetected should

be reported to the application.

timeout ^userInteractionFaultDetected

"requested message has been sent"[not final request] ^sendInfoRes

"user input received"[not final request] ^sendInfoAndCollectRes

"request to send message unsuccessful"[not final request] ^sendInfoErr

"request to send info and collect a response unsuccessful"[not final request]

^sendInfoAndCollectErr

"fault detected in the user interaction" / report error on outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"requested message has been sent"[final request] ^sendInfoRes

"user input received"[final request] ^sendInfoAndCollectReq

"request to send message unsuccessful"[

final request] ^sendInfoErr

"request to send info and collect response

unsuccessful"[final request] ^sendInfoAndCollectErr

abortActionReq[final request is cancelled]

/ cancel the user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"requested message has been sent" ^sendInfoRes

"user input received" ^sendInfoAndCollectRes

sendInfoReq[final request]

sendInfoAndCollectReq[final request]

"fault detected in the user interaction" / report error on all outstanding requests

^userInteractionFaultDetected

release / abort all ongoing user interaction

"call terminated" / report error on all outstanding requests ^userInteractionFaultDetected

IpCall.deassignCall

"request to send info and collect response unsuccessful"

 ^sendInfoAndCollectErr

"request to send message unsuccessful" ^sendInfoErr

Figure : Application view on the UICall object

The association to the IpCall STD is established using the createUICall which passes the IpCall reference. As this is the only correlation between services, and in turn this is only meaningful from a Parlay/OSA modelling perspective it appears clear that both services must share the same implementation logic and view of the call in progress in order to unambiguously resolve the identification of the call within the network. Typically this would be implemented as a shared finite state machine or access to shared data between the services.

Considering the representation of any OSA/Parlay service as follows:

[image: image3.wmf]SCS

SCF

Network

Protocol

Service

The implication of using only a SCS object reference between Call and Call UI Service results in the following:

[image: image4.wmf]SCS

SCF

Network

Protocol

Call

Control

Service

SCS

UI Call

Service

As the internal interface between SCS/SCF is vendor proprietary in nature, it is clear that both SCSs must be sourced from a single vendor. This view tends to suggest that the degree of coupling between the services is such that are possible better combined as a single service rather than treated as independent?

In addition to the issues raised by the object reference identification, there are further issues with the IpUICall STD that require further attention;

1. ‘Call Terminated’: Text should be introduced to clearly explain that this term equates to all events or actions on the IpCall object that result in an IpCall state transition from ‘active’ to either ‘Network Released’ or ‘Application Released’. In either case, the party in the call is no longer connected.

2. IpCall.deassignCall is the only IpCall method explicitly shown on the above IpUICall STD. However the functionality shown and described in the specification appears to be at odds with the current description of this method in the call control definition.

QUOTING: 29.198-4-4.2.0
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

This appears to suggest that the application is no longer interested in processing the call using the IpCall object and that this can be removed. However it doesn’t state that no further Call User interaction is possible for the call that still exists within the network. It could be argued that Call User interaction requests as modelled using the IpUICall STD are completely independent of the IpCall.deassignCall, according to the existing definition. Either the description and purpose of deassignCall need clarified, or the existing interaction on the IpUICall STD needs to be removed.

Irrespective of this the behaviour of deassignCall within the IpCall service needs further explanation when a IpUICall interaction is in progress. Either the deassignCall method can be added to the previous list of methods not supported until the UI completes and extending the exceptions supported on the method to also include P_CALL_UI_IN_PROGRESS (seems at odds with the definition also), or the deassignCall during call user interaction frees only the SCS resources and does not map to any network method (effectivley buffered) until the call user interaction completes. This is to avoid call setup continuation being attempted in the network during the UI session.

3. The IpUICall methods, RecordMessageReq/DeleteMessageReq are not very clearly defined or understood nor do they appear in any action or transaction in the IpUICall STD. It remains unclear as to the exact purpose of these methods, whether they are to be used as part of an existing call (e.g: INAP mapping to promptAndReceiveMessage), or to provision messages for later interactions (in which case should they be supported on IpUIManager?), or both?

4. The result methods for a final UI request, sendInfoAndCollectRes (note typo in STD!) and sendInfoResFinal as shown in the current STD, appear to act as an alternative to the release method. It would aid good OO practice and possibly simplify the interaction with the IpCall object where these events to result in a state transition to ‘Finished’. In that case, only an application invoked IpUICall.release, or a UIFaultDetected would finish the UI session

5. It is assumed that any network timeout to a UICall action would result in appropriate error method, and that the ‘release pending’ state prevents further user interaction invocations from the application. However it would seem possible to issue a single UI request and not state that it was indeed the last, in which case the UI session would remain permanently. It is suggested that an ‘Application Timeout’ is added to the ‘Active’ state, and when it elapses results in a IpAppUICall.userInteractionFaultDetected and transition to NULL state.

It is also worth noting that the IpUICall STD linkage to the IpCall STD raises some questions regarding how fully the IpUIManager interface and STD is required in order to meet the requirements for the IpUICall service. It could be argued that the existing STD shown below:

[image: image5.wmf]Active

exit/ release UI objects

"new"

createNotification

destroyNotification

Creation of UIManager

by Service Factory

Notification

Terminated

destroyNotification

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^userInteractionNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 ^userInteractionNotificationInterrupted

"arrival of user initiated request for user interaction"[notification active for this ui

event] / create a UI object ^IpAppUIManager.reportNotification

createUI / create UI object

createUICall / create UICall object

changeNotification

getNotification

Figure : Application view on the UI Manager

Be replaced by the following simplification for UICall:

[image: image6.wmf]Active

exit/ release UI objects

"

new"

Creation of

UIManager

by Service Factory

IpAccess.terminateServiceAgreement

createUICall / create

UICall object

 Figure : Application view on the UI Manager (CallUI)

The above discussion of option 3 presented in N5-011168, suggests that with additional refinement and clarity on existing behaviour, the current Call and Call UI Service specifications are implementable. However they are clearly also very tightly coupled, such that they must be sourced from a single vendor, and indeed a strong case could be presented that they are in fact a single service (Option 1?) and that the abstract separation of the service only complicates things. Maintaining the separation and simplifying the behaviour could be resolved through an additional call state to allow the IpCall object to be explicitly be informed when a User Interaction session is invoked. This could be an application programmers issue, or as a result of the behaviour of the IpUICall (createUICall, release).

Although no further options from N5-011168 are presented here, it is worth also highlighting that where a requirement for multi-vendorship of services to be required, the following solution could be developed;

[image: image7.wmf]SCS

SCF

Network

Protocol

Call

Control

Service

SCS

UI Call

Service

SCF

Although not fully independent (a shared protocol resource would be required), such a solution could be facilitated by adding additional references to the createUICall method that would allow the network identifiers for the call in progress to be understood by both services. In addition the extra call state, representing user interaction in progress, would be required, and as there is no common data or FSM between services in this architecture, where an application method not to be used to manage this state, an open interface between the two SCS’s would be required to do this (Option 2?)

_1073330759.doc

SCS

SCF

Network

Protocol

Service

_1073334304.doc

Active

exit/ release UI objects

"new"

Creation of UIManager

by Service Factory

IpAccess.terminateServiceAgreement

createUICall / create UICall object

_1073335098.doc

SCS

SCF

Network

Protocol

Call Control

Service

SCS

UI Call

Service

SCF

_1073330462.doc

SCS

SCF

Network

Protocol

Call Control

Service

SCS

UI Call

Service

