	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #15, Cancun, Mexico, 26 – 30 November 2001
	N5-011168


Source:
Lucent, andybennett@lucent.com

AePONA, eamonn.murray@aepona.com
Title:
120070_4 and 120070_5: Implications of the dependence of 

Call-based User Interactions on Call Control
Agenda Item:

Document for:
Discussion

Category:

Work Item ID:
OSA1
Doc Summary:
A discussion of the implications of the dependence of Call-based User Interactions on Call Control
Specs involved:
120070_4 and 120070_5
Introduction

This document is an updated contribution, of N5-011021 presented during CN5#14 in Brighton. It is submitted in order to further clarify the issues surrounding the relationship between call-based User Interactions and Call Control, and seek agreement from the joint group to identify and agree on a solution to these issues. The authors believe that the current Call Control and Call Related User Interaction services, do not provide a sufficiently accurate and stable specification base to which either vendors of these service capabilities or application developers can easily support or develop call based user interaction applications or services.

Analysis of issue

The User Interaction specification states in section 8.1 that :-

createUICall()

This method is used to create a new user interaction object for call related purposes. 

The user interaction can take place to the specified party or to all parties in a call. Note that for certain implementation user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

And in section 8.5 that :-

Interface Class IpUICall 

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected.  An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.
In other words, to play an announcement to a party in a call the UI must make use of Call Control.

The following example sequence is taken from 120070-5:

5.2 Call Barring 1 

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party. 


[image: image1.wmf] : (Logical

View

::

IpAppLogic)

 :

IpAppCallControlManager

 : 

IpAppCall

 : 

IpCall

 : 

IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

1: 

new()

13: 

routeRes

(   )

14: 'forward event'

12: 

routeReq

(        )

15: 

callEnded

(  )

16: "forward event"

17: 

deassignCall

( )

8: 

sendInfoAndCollectReq

(      )

11: release

( )

6: 

createUICall

(  )

7: 

new()

3: 

callEventNotify

(    )

4: 'forward event'

5: 

new()

2: 

enableCallNotification

(   )

9: 

sendInfoAndCollectRes

(    )

10: 'forward event'

 

In summary the sequence of events is 

· The application has the object reference and session ID of a call (equally applies to call leg in MPCC) that it has created using Call Control. It wishes to play an announcement to the party associated with the call.

· It therefore invokes createUICall on the UIManager, passing in the object reference and session ID.

· To play the announcement it then invokes sendInfoAndCollectReq on the UICall object created by the last step. The UI service instance is then expected to make use of the object reference and session ID to ensure the announcement is routed to the appropriate party.

· Once the UICall functionality is completed (in this case by receipt of a PIN code), the application chooses to proceed with the call handling and route the call appropriately.

This appears to be quite straightforward on first inspection, however the question that must be resolved is how does this actually happen in practice?

The scenario above demonstrates that using the current models and APIs, 2 services, 2 service managers and 2 ‘call’ objects are required to control what from a network and end user perspective is all part of a single call. This situation appears to exist in order to support an application modelling perspective in which Call User Interaction is treated as a separate service capability from Call Control. The two services support no defined interaction other than Call Control providing a reference to Call User Interaction via the application that identifies the call (or call Leg). As it stands this reference serves no purpose, as it is only meaningful to the Call Control service itself, and the application currently carries out the User Interaction requests on the IpUICall object with no reference to the call or leg.

It could be argued that how any interaction between Call Control and Call User Interaction happens is hidden from the application and is therefore of no concern. However the problem that remains is that by implying such an interaction, albeit removed from the application domain, clear requirements on behaviour and logic of the underlying solution must be made explicit or at the very least be implied.

Fundamental to agreeing on any solution(s) for this issue, is agreement on the core requirement regarding multi-vendor interoperability for service capabilities. Clearly if it is a core requirement for applications to be able to select different service capabilities from different vendors and use these to deliver an application such as that above, then each service capability must behave in a clearly predefined manner. This should include any interactions or interdependencies between service capabilities, eg Call Control and Call User Interaction.

Considering the sequence diagram for Call Barring above once again, consider the following 2 options.

1 Call User Interaction supplied from Vendor A, Call Control Service supplied from Vendor B:

The call user interaction is shown as messages 6 through 11 above. As it currently stands, the application view of the call control STD has no visibility of the call user interaction. Therefore from a call control perspective it is entirely valid to invoke routeReq any point after message 5. Clearly the application developer must display some intelligence when programming the application, however the call control service cannot dictate the point at which the application developer invokes the routeReq as it has no knowledge of the User Interaction service of Vendor A being used. Therefore the application developer could choose to invoke routeReq at any point after message 9 (assuming that it has waited for the user interaction reply). In such a scenario, the underlying network may not be capable of handling the network primitive from Vendor B’s service at this time. Indeed, even if the message sequence was invoked as shown, there is no guarantee that the IpUICall will be released before the routeReq is handled, unless the interaction between the Vendor A and Vendor B service is clearly defined.

In addition, during the call user interaction, if the party in the call was to go on-hook, then although the call control service would result in a callEnded to the application, is the application expected to release the UICall session, and if so does this actually remove the IpUICall object? If the application fails to release the UICall, what mechanisms are required in order to free up resources within Vendor A’s Call User Interaction service, and in supporting these can we again guarantee that the Call Control service remains unaffected.


2 Call User Interaction and Call Control Service both supplied by Vendor A:

Even if both the services were obtained from the same vendor (Vendor A), and assuming that such a vendor had considered how the services are to interact, the fact that this interaction is not detailed in an way, means that any given application may not be portable to the same service capabilities of another supplier, Vendor B. For example Vendor A may choose to manage the interaction with the application by rigorously enforcing the application message sequence whereas another may provide greater support for internal state and message buffering in order to support the application.

Clearly both options present problems either to application developers and or service developers. Further consideration of messages and states within the Call User Interaction and Call Control services not shown in the example sequence, may demonstrate many more similar problems (e.g handling User Interaction aborts and how this interacts with Call Control). It is clear that a solution to this current problem is required, and it is equally apparent that any solution may be greatly dependent upon the requirement for multi-vendor support.

There seem to be a number of ways forward: -

1. Integrate Call-based User Interaction into Call Control. (single vendor for combined service)

Remove the Call User interaction service completely and fully integrate with existing call control service models. This could be viewed as a similar approach to integrating core call related charging functionality within the call control service itself. There would be resulting additional states or substates in order to define the correct behaviour within the call or call leg and how the user interaction occurs as part of this. There is a danger that this further complicates the call control models, more tightly coupling them to the underlying networks. For example the mappings to INAP and CAP are reasonably clearly understood and there is a danger that the model becomes more tightly coupled to IN. Also, how would such a combined call model be mapped to SiP, can the INFO method be used to support User Interaction during a SiP call?


2. Maintain service separation and define an interface between UI and CC (possibly supplied by different vendors).

This implies that the UI instance acts as a Client App to the CC instance, which violates the 1-2-1 mapping between App and Service Instance and multiple points of control of the call. It would also imply all of the procedures for signing service agreements, etc. The new interface would also basically be the same as IpUICall so you might as well integrate this into CC and cut out the “middle man”. Furthermore there will be more than one interface required, as the UICall may relate to IpCall, IpMultiPartyCall or IpCallLeg. In addition, as in the single service model in 1 above, the state models for the ‘call’ objects would require similar levels of modification in order to tightly define the behaviour of the call and application during the user interaction process, and ensure that graceful return of control of the call is handed off to the application.


3. Maintain existing separation between UI and CC, define the use and behaviour of the Call Object Reference and application API (implied supply of both services from a single vendor).

This potential solution maintains the existing logical and possibly physical separation of the call control and call user interaction services. However by defining how the Call User Interaction service is to use the Call object reference (associated with IpCall, IpMultiPartyCall,IpCallLeg) as an index to control the current state or operation of the call within the network, little or no modification to the current services is required. However if a reference understood by one service is to be used by another, then a common network transport protocol between the two services is implied, and thus the service must be sourced from the same vendor. In addition, if minimal change is applied to the existing state models further specification on behaviour and exceptions must as a minimum be provided in order to ensure that applications are portable between vendors. For example if the user interaction is in progress at a network level, attempts to invoke call control functionality must be clearly handled (and vice versa).

Conclusions/Next Steps

The list of potential ways forward outlined above, may not be complete. However in order to further clarify and progress this issue to a satisfactory resolution, this contribution seeks the following endorsements from the meeting:

· Agreement that a problem on the use and implementation of a Call related User Interaction service in conjunction with a Call Control service exists and that the joint group needs to put forward a recommended solution.


· Seek clarification from SA1 on the existence of any requirement to transparently support access to operator service capabilities using implementations from multiple vendors. In particular to determine whether such a requirement applies in the case of tightly coupled services such as call control and user interaction.

The following extract from 22.127 hints at such a requirement but it needs to be more explicit.

  High level requirements to OSA

  The following high level requirements apply to the OSA application programming interface (API). The standardised

  API shall be:

  -       independent of vendor specific solutions; (our emphasis)
  -       independent of programming languages, operating systems etc used in the service capabilities;

  -       secure, scalable and extensible;

  -       independent of the location where service capabilities are implemented;

  -       independent of supported server capabilities in the network;

  - Access to Service Capability Features shall be realised using modern state of the art access technologies, e.g.

  distributed object oriented technique might be considered.;

  - OSA shall be aligned as far as possible with equivalent work in other bodies, such as ETSI SPAN and Parlay;

  - OSA shall allow applications access to home network service capability features. Access to Service capability

  features other than those provided by the home network is not required.
· Establish a special interest group of parties that shall work collaboratively on developing a single recommended solution.


· Provide the solution from the special interest group to the joint meeting in Honk Kong for inclusion in Parlay 3.1.

_1067251145.doc


 : (Logical 







View::IpAppLogic)







 : 







IpAppCallControlManager







 : IpAppCall







 : IpCall







 : IpUICall







 : 







IpUIManager







 : 







IpCallControlManager







 : 







IpAppUICall







1: new()







13: routeRes(   )







14: 'forward event'







12: routeReq(        )







15: callEnded(  )







16: "forward event"







17: deassignCall( )







8: sendInfoAndCollectReq(      )







11: release( )







6: createUICall(  )







7: new()







3: callEventNotify(    )







4: 'forward event'







5: new()







2: enableCallNotification(   )







9: sendInfoAndCollectRes(    )







10: 'forward event'












