	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #14, Brighton, UK, 16 – 19 October 2001
	N5-011080

Source:
David Tweedie (Nortel Networks), davidtw@nortelnetworks.com

Gary Bruce (SUN Microsystems), gary.bruce@sun.com

Title:
Proof of Concept – Transforming CORBA UML to Analysis and back
Agenda Item:

Document for:
Approval

Category:
other

Work Item ID:
OSA1
Doc Summary:

Specs involved:
N/A
Introduction

Nortel proposed, during the Munich meeting, that the base UML model for OSA should be an Analysis model rather than the current CORBA model. It was suggested that a technology independent Analysis UML model would help facilitate the adoption of additional technologies for use with OSA such as SOAP, XML, Java, etc. Although there appeared to be general agreement that, in theory, this was the correct approach, it was suggested that more investigation should be done to insure that the transformation from an Analysis model to other technology specific models could be done automatically though the use of scripting. This contribution documents the steps taken to transform the current CORBA UML model to an Analysis model and back again. The “before and after” models were then verified as being identical.

The transformations have been automated using the Rational Rose Extensibility Interface.

All work performed thus far has been done using Rational Rose 2000e. The scripts, which automate this work, have been tested in Rational Rose 2000e and Rational Rose 2001e.

Transforming CORBA UML model to Analysis UML model

In transforming the CORBA UML model into an Analysis UML Model, there are three steps:

Changing the Language Properties

The language property associated with each class is changed from CORBA to Analysis.

The language associated with a class is based on the language assigned to a component module that the class has been assigned to. In order to change the language of every class in the model, the following steps are performed:

1. Remove the class from the component module.

2. Set the module’s language to Analysis

3. Reassign the class to the component module.

4. If the class is not already assigned to a component module, then create a dummy component module and set its language to Analysis, assign the class to the dummy component module, delete the dummy component module.

This step is automated within the Convert_CORBA_to_Analysis.ebs script.

Recommendation: This same result could be obtained if 1) every class in the model was assigned to a component module, and 2) the language of the component modules were changed to Analysis. We chose to iterate though each class instead (as detailed in the above 4 steps), on the off chance that a class was not assigned to a component module.

Changing the Stereotypes

The stereotypes associated with packages and classes within the model are changed from CORBA stereotypes to Analysis stereotypes.

There is a straightforward mapping between CORBA stereotypes and Analysis stereotypes as shown below.

Note: New analysis stereotypes were created for each of the Parlay data types.

	CORBA Stereotype
	Analysis Stereotype

	CORBAModule
	Package

	CORBAException
	Exception

	CORBAConstant
	Constant

	CORBAStruct
	SequenceOfDataElements

	CORBAEnum
	NameValuePair

	CORBATypedef (TP*Set)
	NumberedSetOfDataElements

	CORBATypedef (others)
	TypeDef

	CORBAUnion
	TaggedChoiceOfDataElements

	Interface
	Interface

This step is automated within the Convert_CORBA_to_Analysis.ebs script.

Deleting the Component Structure

We believe that the Component View imposes a physical file structure on the generated code. This component structure may not adequately address other languages such as Java. It is our belief that a Component View should not exist within an Analysis model.

We do recognise the effort involved in reconstructing this Component View every time a mapping from the Analysis model to a CORBA model is performed. To address this we have automated a way to reconstruct the Component View during the automated Analysis to CORBA UML model mapping. This Component View reconstruction is mentioned in the Analysis to CORBA mapping section.

Before the Component structure is deleted, the component module-to-logical class mapping is saved to a data file. Each line in the file has a component module name and a logical class name. Below is an example of what the data file looks like.

CORBAComponant.dat

This step is automated within the Convert_CORBA_to_Analysis.ebs script.

Transforming Analysis UML Model to CORBA UML Model

Transforming the Analysis UML Model into a CORBA UML model involves four steps:

Save Current CORBA UML Component View

Before transforming the Analysis UML model to a CORBA UML model, the Component View in the current CORBA UML model must be saved to a file so that the Component View can be reconstructed during the transformation.

The component module-to-logical class mapping is saved to a data file in which each line in the file has a component module name and a logical class name. Below is an example of what the data file looks like.

This process is automated by an independent script named Export_Component_View.ebs.

CORBAComponant.dat

Reconstruct the Component View

The Component View is reconstructed.

The data file, which stored the module-class mapping, is used to automatically reconstruct the Component View. Each line in the file is read one at a time. If the module, which is read, does not exist in the Component View, then the module is created and the class which was read is assigned to that new module. If the module already exists in the Component view, then the class is assigned to the existing module.

When the modules are created, they are created with language set to CORBA.

This step is automated within the Convert_Analysis_to_CORBA.ebs script.

Changing the Stereotypes

The stereotypes associated with packages and classes within the model are changed from CORBA stereotypes to Analysis stereotypes.

There is a straightforward mapping between CORBA stereotypes and Analysis stereotypes as shown below.

	CORBA Stereotype
	CORBA Sterotypes

	Package
	CORBAModule

	Exception
	CORBAException

	Constant
	CORBAConstant

	SequenceOfDataElements
	CORBAStruct

	NameValuePair
	CORBAEnum

	NumberedSetOfDataElemets
	CORBATypedef

	TypeDef
	CORBATypedef

	TaggedChoiceOfDataElemets
	CORBAUnion

	Interface
	Interface

This step is automated within the Convert_Analysis_to_CORBA.ebs script.

Changing the Language Properties

The language property associated with each class is changed from Analysis to CORBA.

When the Component View is reconstructed, the language of the classes is implicitly set to CORBA. This step insures that any classes, which may not have been assigned to a component module (and hence have not had their language set to CORBA), will have their language properly changed to CORBA.

The language associated with a class is based on the language assigned to a component module that the class has been assigned to. In order to change the language of every class in the model, the following steps are performed:

5. Remove the class from the component module.

6. Set the component module’s language to CORBA

7. Reassign the class to the component module.

8. If the class is not already assigned to a module, then create a dummy component module and set its language to CORBA, assign the class to the dummy component module, delete the dummy component module.

This step is automated within the Convert_Analysis_to_CORBA.ebs script.

Recommendation: This same result could be obtained if 1) every class in the model was assigned to a component module, and 2) the language of the component modules were changed to CORBA. We chose to iterate though each class instead (as detailed in the above 4 steps), on the off chance that a class was not assigned to a component module.

Scripts

Attached below is the script used to convert the current CORBA UML model to an Analysis model and the script used to convert the Analysis UML Model into a CORBA UML model. They can be viewed with a text viewer.

Note: To run these scripts against the current model:

1) The mdl and cat files must NOT have their “read-only” properties set.

2) The “Component View” assignments have to be removed from IpAccountManager, IpAppAccountManager, TpBalanceSet, TpChargingEventName, TpChargingEventInfo, TpChargingEventCriteria, TpBalanceQueryError, TpBalanceInfo, TpBalance, IpChargingManager, IpAppChargingSession, IpChargingSession and TpAmount classes, as they are incorrect.

 EMBED Package [image: image1.wmf]Convert_Analysis_to_CORBA_Model.ebs

 EMBED Package [image: image2.wmf]Export_Componant_View.ebs

"osa","P_INVALID_AMOUNT"

"osa","P_INVALID_STATE"

"osa","P_INVALID_NETWORK_STATE"

"osa","TpURL"

"osa","TpBoolean"

"osa","P_INVALID_TIME_AND_DATE_FORMAT"

"osa","P_INVALID_SESSION_ID"

…

"gcc_interfaces","IpCall"

"gcc_interfaces","IpCallControlManager"

"gcc_interfaces","IpAppCallControlManager"

"gcc_interfaces","TpCallIdentifier"

"gcc_interfaces","IpAppCall"

…

"osa","P_INVALID_AMOUNT"

"osa","P_INVALID_STATE"

"osa","P_INVALID_NETWORK_STATE"

"osa","TpURL"

"osa","TpBoolean"

"osa","P_INVALID_TIME_AND_DATE_FORMAT"

"osa","P_INVALID_SESSION_ID"

…

"gcc_interfaces","IpCall"

"gcc_interfaces","IpCallControlManager"

"gcc_interfaces","IpAppCallControlManager"

"gcc_interfaces","TpCallIdentifier"

"gcc_interfaces","IpAppCall"

…

_1064337901/Convert_Analysis_to_CORBA_Model.ebs
''

'	Convert_Analysis_to_CORBA.ebs

'	

'

'	This script will convert an Analysis UML Model to a CORBA

'	UML Model. This script will make the following changes:

'		1. Change the 'Language' of the classes from Analysis to CORBA

'		2. Reconstruct the Componant View

'		3. Change the Stereotypes from Analysis stereotypes to

'		 CORBA stereotypes

'

'	This script does not change the CORBA Model back to an

'	Analysis model.

'

'

'	Written by: David Tweedie - Nortel Networks 09/12

'

'	Portions of this script are taken from scripts written by:

'		Patrick Rutledge, Rational Support, 10/98

'		

Sub Main

 ' Change language from Analysis to CORBA

 changeLanguage

 ' Reconstuct the Componant view

 contructComponentView

 ' Change stereotypes from Analysis stereotypes to CORBA stereotypes

 changeStereotypes

End Sub

'''

' changeLanguage

' --------------

' This subroutine will assign CORBA as the language for all classes

' within the model.

'

' If the class has a module (hence Language assigned) the the assignment

' is removed, the new language assigned to the module and the module reassigned

' back to the class. This allows existing class/component structure to be

' maintained.

'

' For classes without components, the language is assigned via a dummy component

' and the component deleted.

'

' This subroutine is based on the the script 'set_class_language.ebs' written

' by Partick Rutledge and Keng Lim, Rational Support

Sub changeLanguage

 Dim aClass As Class

 Dim Dummy As Class

 Dim allClasses As ClassCollection

 Dim dummyMod As Module

 Dim oldMod As Module

 Dim oldModules As ModuleCollection

 'Dim langDlog As SelectLangDialog

 'Set language to CORBA

 lang$ = "CORBA"

' Get all classes in the model

 Set allClasses = RoseApp.CurrentModel.GetAllClasses()

 Set dummyMod = RoseApp.CurrentModel.RootSubsystem.AddModule("Dummy")

 dummyMod.AssignedLanguage = lang$

 For i% = 1 To allClasses.Count

 Set aClass = allClasses.GetAt(i%)

	Set oldModules = aClass.GetAssignedModules

 ' Remove language assigned components, if it exists

 ' Assign new Language and reassign to classes

 If oldModules.Count > 0 Then

	 For j = 1 To oldModules.Count

		 Set oldMod = oldModules.GetAt(j)

	 aClass.RemoveAssignedModule oldMod

 oldMod.AssignedLanguage = lang$

		 aClass.AddAssignedModule oldMod

		Next j

	Else

 aClass.AddAssignedModule dummyMod

 	End If

 Next i%

 worked = RoseApp.CurrentModel.RootSubsystem.DeleteModule(dummyMod)

End Sub	'changeLanguage

''

' changeStereotypes

' -----------------

' This subroutine will change Analysis stereotypes into CORBA stereotypes.

'

'

Sub changeStereotypes

	Dim theModel As Model					' Current Rose model

 Dim theClasses As ClassCollection		' All classes contained within the model

 Dim theClass As Class					' Current class being processed						

	Dim theCategories As CategoryCollection	' All classes contained within the model

	Dim theCategory As Category				' Current category being processed

 Dim newStereotype As String

 Set theModel = RoseApp.CurrentModel

 Set theClasses = theModel.GetAllClasses()

	' Cycles though all the classes and changes their stereotypes

	' from Analysis stereotypes to CORBA stereotypes

	For i = 1 To theClasses.Count

 	Set theClass = theClasses.GetAt(i)

		Select Case theClass.Stereotype

			Case "Package"

 newStereotype = "CORBAModule"

			Case "Exception"

				newStereotype = "CORBAException"

			Case "Constant"

				newStereotype = "CORBAConstant"

			Case "SequenceOfDataElements"

				newStereotype = "CORBAStruct"

			Case "NameValuePair"

				newStereotype = "CORBAEnum"

			Case "Typedef"

				newStereotype = "CORBATypedef"

			Case "NumberedSetOfDataElements"

				newStereotype = "CORBATypedef"

			Case "TaggedChoiceOfDataElements"

				newStereotype = "CORBAUnion"

			Case Else

				newStereotype = theClass.Stereotype

		End Select

		theClass.Stereotype = newStereotype

			

 Next i

	

	Set theCategories = theModel.GetAllCategories()

	' Cycles though all the Categories and changes their stereotypes

	' from Analysis stereotypes to CORBA stereotypes

	For i = 1 To theCategories.Count

		Set theCategory = theCategories.GetAt(i)

		Select Case theCategory.Stereotype

			Case "Package"

				newStereotype = "CORBAModule"

			Case Else

				newStereotype = theCategory.Stereotype

		End Select

		theCategory.Stereotype = newStereotype

	Next i

End Sub 'ChangeStereotypes

'''

' constructComponantView

' ----------------------

'

' This subroutine will reconstruct the Componant view based on a

' file which maps the logical class into componant modules.

'

Sub contructComponentView

 Dim theModel As Model				' current Rose model

 Dim theRootSubsystem As Subsystem	' Componant View

 Dim theModules As ModuleCollection	' modules located within the Componant View 	

 Dim theCurrentModule As Module		' curent module being processed

 Dim allClasses As ClassCollection	' all classes in the model

 Dim theCurrentClass As Class			' current class being procesed

 Dim theModuleIndex As Integer		' current index within a collection of modules

 Dim theClassIndex As Integer			' current index within a collection of classes

 Set theModel = RoseApp.CurrentModel

 Set allClasses = theModel.getAllClasses()

 Set theRootSubsystem = theModel.RootSubsystem

 Set theModules = theRootSubsystem.Modules

 currentModuleName$ = ""

 ' Opening module-class mapping file for reading

 Open "CORBAComponant.dat" For Input As #1

 ' Each loop will read one module-class mapping

 Do While Not EOF(1)

 Input #1, module$, class$

	 ' Find or add the Module which has been read from the data file

	 ' and assign it to theCurrentModule variable.

 If module$ <> currentModuleName$ Then

		 Set theModules = theRootSubsystem.Modules

		

		 ' If the module which has been read is not yet part of the

		 ' Componant View, then add it.

	 If theModules.FindFirst(module$) = 0 Then

	 Set theCurrentModule = theRootSubsystem.addModule(module$)

		 theCurrentModule.Assignedlanguage = "CORBA"

			theCurrentModule.Stereotype = ""

	 Else

	 	 theModuleIndex = theModules.FindFirst(module$)

		 Set theCurrentModule = theModules.getAt(theModuleIndex)

	 End If

	 currentModuleName$ = module$

 End If

	 ' Find the Class which was read from the data file and assign it

	 ' to the Module read from the data file.

 theClassIndex = allClasses.FindFirst(class$)

 Set theCurrentClass = allClasses.getAt(theClassIndex)

 theCurrentClass.AddAssignedModule theCurrentModule

 Loop

	

End Sub	'constructComponentView

_1064337933/Export_Componant_View.ebs
'''

' Export_Compnant_View.ebs

'

' This script will save the component module/logical class

' mapping to file. This file will be used to reconstruct

' the Component View during the Analysis to CORBA model mapping

'

' This scrip should be run on the most current CORBA UML model

' before a mapping from Analysis to CORBA occurs.

'

' written by: David Tweedie - Nortel Networks 10/10

Sub Main

	

 Dim theModel As Model

 Dim theRootSubsystem As Subsystem

 Dim theModules As ModuleCollection

 Dim theCurrentModule As Module

 Dim theClassCollection As ClassCollection

 Dim theCurrentClass As Class

 Dim outputData As String

 Set theModel = RoseApp.CurrentModel

 Set theRootSubsystem = theModel.RootSubsystem

 Set theModules = theRootSubsystem.getAllModules()

 ' Open the CORBAComponant.dat file for writting

 Open "CORBAComponant.dat" For Output Access Write As #1

 ' Loop though each component module

 For i = 1 To theModules.Count

 Set theCurrentModule = theModules.getAt(i)

 Set theClassCollection = theCurrentModule.getAssignedClasses()

 ' For each class assigned to the module, write the module name and

 ' class name to the file.

 For j = 1 To theClassCollection.Count

 Set theCurrentClass = theClassCollection.getAt(j)

	 Write #1, theCurrentModule.Name,theCurrentClass.Name

 Next j

 Next i

 Close

End Sub

_1064337890/Convert_CORBA_to_Analysis_Model.ebs
''

'	Convert_CORBA_to_Analysis.ebs

'	

'

'	This script will convert a CORBA UML Model to an Analysis

'	UML Model. This script will make the following changes:

'		1. Change the 'Language' of the classes from CORBA to Analysis

'		2. Remove the Componants from the model

'		3. Change the Stereotypes from CORBA stereotypes to

'		 Analysis stereotypes

'

'	This script does not change the Analysis Model back to a

'	CORBA model.

'

'

'	Written by: David Tweedie - Nortel Networks 09/01

'

'	Portions of this script are taken from scripts written by:

'		Patrick Rutledge, Rational Support, 10/98

'		

Sub Main

 ' Change language from CORBA to Analysis

 changeLanguage

 'Remove componants from the Componant view

 removeComponants

 ' Change stereotypes from CORBA stereotypes to Anaysis stereotypes

 changeStereotypes

End Sub

'''

' changeLanguage

' --------------

' This subroutine will assign Analysis as the language for all classes

' within the model.

'

' If the class has a module (hence Language assigned) the the assignment

' is removed, the new language assigned to the module and the module reassigned

' back to the class. This allows existing class/component structure to be

' maintained.

'

' For classes without components, the language is assigned via a dummy component

' and the component deleted.

'

' This subroutine is based on the the script 'set_class_language.ebs' written

' by Partick Rutledge and Keng Lim, Rational Support

Sub changeLanguage

 Dim aClass As Class

 Dim Dummy As Class

 Dim allClasses As ClassCollection

 Dim dummyMod As Module

 Dim oldMod As Module

 Dim oldModules As ModuleCollection

 'Dim langDlog As SelectLangDialog

 'Set language to Analysis

 lang$ = "Analysis"

' Get all classes in the model

 Set allClasses = RoseApp.CurrentModel.GetAllClasses()

 Set dummyMod = RoseApp.CurrentModel.RootSubsystem.AddModule("Dummy")

 dummyMod.AssignedLanguage = lang$

 For i% = 1 To allClasses.Count

 Set aClass = allClasses.GetAt(i%)

	Set oldModules = aClass.GetAssignedModules

 ' Remove language assigned components, if it exists

 ' Assign new Language and reassign to classes

 If oldModules.Count > 0 Then

	 For j = 1 To oldModules.Count

		 Set oldMod = oldModules.GetAt(j)

	 aClass.RemoveAssignedModule oldMod

 oldMod.AssignedLanguage = lang$

		 aClass.AddAssignedModule oldMod

		Next j

	Else

 aClass.AddAssignedModule dummyMod

 	End If

 Next i%

 worked = RoseApp.CurrentModel.RootSubsystem.DeleteModule(dummyMod)

 MsgBox lang$ + " Successfully Assigned to Classses"

End Sub	'changeLanguage

'''

' removeComponants

' ----------------

' This subroutine will remove all componants from the Componant view

'

'

Sub removeComponants

	

	Dim theModel As Model			 ' Current Rose Model

	Dim theRootSubsystem As Subsystem ' The ComponantView level

	Dim theModules As ModuleCollection ' The componants under ComponantView

	Dim theModule As Module			 ' Current componant to be deleted

	Dim retVal As Boolean

		

	Set theModel = RoseApp.CurrentModel

	Set theRootSubsystem = theModel.RootSubsystem

	Set theModules = theRootSubsystem.Modules

	' Cycle though the componants in the ComponantView and delete them one by one

 	For i = 1 To theModules.Count

		Set theModule = theModules.GetAt(1)

		retVal = theRootSubsystem.DeleteModule(theModule)

		Set theModules = theRootSubsystem.Modules

	Next i

	

End Sub 'removeComponants

''

' changeStereotypes

' -----------------

' This subroutine will change CORBA stereotypes into Analysis stereotypes.

'

'

Sub changeStereotypes

	Dim theModel As Model					' Current Rose model

 Dim theClasses As ClassCollection		' All classes contained within the model

 Dim theClass As Class					' Current class being processed						

	Dim theCategories As CategoryCollection	' All classes contained within the model

	Dim theCategory As Category				' Current category being processed

 Dim newStereotype As String

 Set theModel = RoseApp.CurrentModel

 Set theClasses = theModel.GetAllClasses()

	' Cycles though all the classes and changes their stereotypes

	' from CORBA stereotypes to Analysis stereotypes

	For i = 1 To theClasses.Count

 	Set theClass = theClasses.GetAt(i)

		Select Case theClass.Stereotype

			Case "CORBAModule"

				newStereotype = "Package"

			Case "CORBAException"

				newStereotype = "Exception"

			Case "CORBAConstant"

				newStereotype = "Constant"

			Case "CORBAStruct"

				newStereotype = "SequenceOfDataElements"

			Case "CORBAEnum"

				newStereotype = "NameValuePair"

			Case "CORBATypedef"

			 If theClass.Name Like "*Set" Then

				 newStereotype = "NumberedSetOfDataElements"

				Else

 	 newStereotype = "Typedef"

				End If

			Case "CORBAUnion"

				newStereotype = "TaggedChoiceOfDataElements"

			Case Else

				newStereotype = theClass.Stereotype

		End Select

		theClass.Stereotype = newStereotype

			

 Next i

	

	Set theCategories = theModel.GetAllCategories()

	' Cycles though all the Categories and changes their stereotypes

	' from CORBA stereotypes to Analysis stereotypes

	For i = 1 To theCategories.Count

		Set theCategory = theCategories.GetAt(i)

		Select Case theCategory.Stereotype

			Case "CORBAModule"

				newStereotype = "Package"

			Case Else

				newStereotype = theCategory.Stereotype

		End Select

		theCategory.Stereotype = newStereotype

	Next i

End Sub 'ChangeStereotypes

