1

	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #14, Brighton, UK, 16 – 19 October 2001
	N5-010965

Source:
Ericsson

Title:
MPCC: SIP Mapping Tables
Agenda Item:
6.2
Document for:
Discussion
Category:
Report
Work Item ID:
OSA1
Doc Summary:

Specs involved:
ETSI DTR 120075-4 Sub-part 4 multiparty call control SIP
Introduction

This document is intended for discussion of a first outline of the SIP mapping for the Multi-party Call Control API.

The focus in this first draft has been on the mapping on MPCC method level and SIP message level. Especially the methods identified to have an impact on the SIP signalling have been addressed. Detailed mapping on parameter level has also been worked out.

Proposal

It is proposed that the content in section 2 of this document could be used as a base for further work on 120075-4 Sub-part 4 multiparty call control SIP for next release.

Document for Discussion

1 Introduction

For the PARLAY 3.0/ ETSI OSA API Version 1 the Call Control API is composed of four parts:

· Generic call control (GCC)

· Multi party call control (MPCC)

· Multi media call control (MMCC)

· Multi-Media Conference call control (MCCC)

A Technical Report (DTR SPAN 120075) is to include SIP mappings for call control MPCC and MMCC and MCCC.

This document addresses the mapping between the OSA MPCC API and the SIP, mainly in the form of mapping tables.
In this respect the focus is on how the SIP protocol and the OSA API MPCC match each other regarding methods/messages and parameters.

Note: The 3GPP defined ISC (IP multi media service control) interface as being SIP between the OSA SCS gateway and the SIP server (S-CSCF) is not addressed herein. The ISC comprises four SIP-based models for the support of service control, these are all thought to be applicable for possible interactions on the ISC interface. The four SIP based ISC models are: 1) Proxy mode, 2) Redirect mode, 3) User Agent mode, 4) 3rd party controller mode.
The specific (combination of) model(s) to be applied depend on the characteristics and the nature of the service that is being executed. These standard SIP-based models can be viewed as "toolkits" for implementing IMS services. The ISC model is described in [1].

1.1 References

 [1] TS 23.218 v0.7.0 (2001-10) IP Multimedia (IM) Session Handling ;
IP Multimedia (IM) call model (Release 5)

[2] IETF SIP Protocol Version 04,
http://www.jdrosen.net/papers/draft-ietf-sip-rfc2543bis-04.txt

[3] OSA API Call Control , ES 201 915-4,
- subpart for the MPCC API.

 [4] Parlay and SIP
British telecom plc (2000)
Tdoc N5-010016 (CN5#9 Meeting)

 [5] Third Party Call Control in SIP
http://www.jdrosen.net/papers/draft-rosenberg-sip-3pcc-02.txt
1.2 Document Organisation

The chapter 2 starts by describing different concepts between SIP and the OSA API. This is followed by mapping tables. The mapping tables will list the MPCC methods and parameters that can be mapped and give their correspondence in SIP.

Table of Contents

21
Introduction

1.1
References
2
1.2
Document Organisation
2
2
MPCCS: SIP Mapping Tables
5
2.1
Mapping of Concepts
5
2.1.1
API Call Session ID & SIP Call ID
5
2.1.2
Call Leg Concepts
5
2.2
Mapping between API Methods and SIP Messages
6
2.2.1
MPCCS: Call Manager Service Interface
6
2.2.1.1
createCall
6
2.2.1.2
createNotification
6
2.2.1.3
destroyNotification
9
2.2.1.4
changeNotification
9
2.2.1.5
getNotification
10
2.2.1.6
SetCallLoadControl
10
2.2.2
MPCCS: Call Manager Application Interface
11
2.2.2.1
managerInterrupted
11
2.2.2.2
managerResumed
12
2.2.2.3
reportNotification
12
2.2.2.4
callAborted
15
2.2.2.5
callOverloadEncountered
16
2.2.2.6
callOverloadCeased
16
2.2.3
MPCCS: Multi-Party Call Service Interface
17
2.2.3.1
getCallLegs
17
2.2.3.2
createCallLeg
17
2.2.3.3
createAndRouteCallLegReq
18
2.2.3.4
release
19
2.2.3.5
deassignCall
21
2.2.3.6
getInfoReq
21
2.2.3.7
superviseReq
22
2.2.3.8
setAdviceOfCharge
23
2.2.3.9
setChargePlan
23
2.2.4
MPCCS: Multi-Party Call Application Interface
24
2.2.4.1
createAndRouteCallLegErr
24
2.2.4.2
callEnded
25
2.2.4.3
getInfoRes
26
2.2.4.4
getInfoErr
27
2.2.4.5
superviseErr
27
2.2.4.6
superviseRes
28
2.2.5
MPCCS: CallLeg Service Interface
29
2.2.5.1
routeReq
29
2.2.5.2
eventReportReq
30
2.2.5.3
release
30
2.2.5.4
getInfoReq
33
2.2.5.5
getCall
33
2.2.5.6
continueProcessing
34
2.2.5.7
attachMedia
34
2.2.5.8
detachMedia
36
2.2.5.9
getLastRedirectedAddress
36
2.2.6
MPCCS: CallLeg Application Interface
37
2.2.6.1
routeErr
37
2.2.6.2
eventReportRes
37
2.2.6.3
eventReportErr
41
2.2.6.4
callLegEnded
41
2.2.6.5
getInfoRes
41
2.2.6.6
getInfoErr
41
2.2.6.7
superviseErr
41
2.2.6.8
superviseRes
41

List of Tables

7Table 2‑1 CallEventType Mapping

Table 2‑2 TpCallMonitorMode mapping
8
Table 2‑3 TpCallTreatmentType Mapping
11
Table 2‑4 TpCallNotificationReportScope mapping table
13
Table 2‑5 TpCallAppInfo Type mapping Table
13
Table 2‑6 TpCallEventInfo Mapping Table
14
Table 2‑7 TpReleaseCause Table mapping
20
Table 2‑8 TpCallErrorType mapping table
25

2 MPCCS: SIP Mapping Tables

2.1 Mapping of Concepts

2.1.1 API Call Session ID & SIP Call ID

In the MPCCS the CallSessionID designates the call object as seen from the application.

In SIP, a SIP call is identified by a globally unique call-id and consists of all participants in a session invited by a common source. The call-id is created when a user agent sends an INVITE request. This INVITE request may generate multiple acceptances, each of which are part of the same call (but are different SIP call legs).

There is a 1:1 correlation between MPCCS callSessionID and the SIP call-id for an ordinary 2 party call.
Beyond that it becomes more complex. However, the sematics of SIP Call-ID is somewhat different from traditional telephony. It identifies an invitation of a particular client. This means that a conference in SIP may raise several calls with different Call-IDs. In traditional telephony and in MPCCS this would always be the same call.

Note1: using the MPCCS callSessionID as a SIP call-id in the SIP INVITE request message could violate SIP, i.e. the generation of a unique call-ID for a particular invitation could not be secured.

2.1.2 Call Leg Concepts

In MPCCS the call leg object designates the association between a call and an address. It represents an addressable participant in the call and is identified by a callLegSessionID .The MPCC API uses this callLegSessionID to identify a call leg session.

In SIP, the call leg object is defined as the pairwise signalling relationship between two SIP user agents (see [2]). It is identified by the Call_ID, the To and From address header Fields. The Call-ID identifies the call in the network. It is a global unique identifier. The To header field contains the information regarding the endpoint who will receive the SIP request or response, e.g. INVITE message. The From header field represents the originator of the request or response. But, as we can see, the Call-ID, the From and To heaser fields define an association between the call (Call-ID) and the address (To, From).

Thus we can map these two concepts together.
 However, there is no easy mapping between SIP and OSA MPCCS leg concepts because of the definition of SIP Call Leg always include TWO user agents (UAs). Therefore, the mapping depends on the SIP server role that SCS plays in a SIP session. For example, if SIP server (SCS) acts as a proxy server then the 2-party call has only one leg in SIP (between the 2 UAs), while OSA MPCCS expects 2 legs (one from the calling party to SCS and another from SCS to the called party). Where an application demands full leg control in SIP the SIP server (SCS) should always act as UA (UA or B2BUA) or 3rd party controller [1]. Only the latter modes of operation in SCS realises a direct 1:1 correlation between SIP and OSA MPCCS call leg.

2.2 Mapping between API Methods and SIP Messages

2.2.1 MPCCS: Call Manager Service Interface

The call manager interface class provides the management functions to the multi-party call Service Capability Features. The application programmer can use this interface to create call objects and to enable or disable call-related event notifications.

2.2.1.1 createCall
createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

This method is used to create a new Call object in the SCS.

[image: image1.wmf]

Participant

SIP

server

SCS

Application

createCall

Figure 2‑1 CreateCall() Call Flow

Normal Operation

	Pre-conditions
	An agreement is established between the network operator and the service provider to enable the application to create call object

	1
	A new Multi-party Call object is created in the SCS and the application gets a reference to the call object.

Parameter Mapping

None*)

.
Note *): However, the call Session ID returned in this method will later on be correlated to SIP call-Id.

2.2.1.2 createNotification
createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID
This method is used to enable call notifications so that events can be sent to the application.
NOTE: This is the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification
createNotification() is not applicable if the call is set-up by the application.

[image: image2.wmf]

Participant

SIP

server

SCS

Application

createNotification

 SIP Server set to observe for

call events to be notified.

Figure 2‑2 CreateNotification() Call Flow

Normal Operation
	Pre-conditions
	An agreement is established between the network operator and the service provider for the event notification to be enabled

	1
	The application invokes the createNotification method

	2
	The SCS requests the SIP server to observe for certain SIP call events to be notified to the application.

	Parameter MappingFrom: createNotification
	SIP
	Remark

	AppCallControlManager
	N/A
	

	NotificationRequest (TpCallNotificationRequest) :
	-
	Not mapped.
 However, the parameter has to be verified for SIP validity of parameter values.
For example, address plan that can only be accepted is URL (SIP URL).
SIP server is to monitor for SIP events requested to be notified if encountered to the application.

	CallNotificationScope:
	
	

	 DestinationAddress
	-
	Parameter specific to filtering criteria (event triggering) of destination address information, e.g. Request_URIin SIP messaging.

	 OriginatingAddress
	-
	Parameter specific to filtering criteria (event triggering) of originating address information like in To header Fieldin SIP messaging.

	CallEventsRequested (set):
	
	

	 CallEventType
	
	See Table 2‑1 for SIP Metdods / Responses requested to be observed.

	 AdditionalCallEventCeiteria
	
	What is the purpose of this parameter?

	 CallMonitorMode
	
	See Table 2‑4

Table 2‑1 CallEventType Mapping

	Call Event Name
	SIP
	Remarks

	P_CALL_EVENT_UNDEFINED
	N/A
	

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	N/A
	Not applicable to SIP; would mean an empty To: header

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
	N/A
	

	P_CALL_EVENT_ADDRESS_COLLECTED
	N/A
	No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

	P_CALL_EVENT_ADDRESS_ANALYSED
	N/A
	No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	INVITE
	RE-INVITE case - mapping ffs

	P_CALL_EVENT_ORIGINATING_RELEASE
	BYE,
CANCEL
	Incoming BYE, CANCEL received from calling party (UAC) on Originating Call Leg in MPCCS.
See corresponding Table for OriginatingReleaseCause datatype TpReleaseCause
for details Table 2‑2

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	INVITE
	Incoming INVITE received at destination requesting the termination of the session to called party

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
	INVITE
	Incoming INVITE received at destination requesting the termination of the session to called party.

	P_CALL_EVENT_ALERTING
	SIP : 180
	

	P_CALL_EVENT_ANSWER
	SIP 200
	

	P_CALL_EVENT_TERMINATING_RELEASE
	BYE,
4xx, 5xx, 6xx
	Incoming BYE, 4xx, 5xx, 6xx received from called party (UAS) on Terminating Call Leg in MPCCS
See corresponding Table TerminatingReleaseCause datatype TpReleaseCause for details Table 2‑3

	P_CALL_EVENT_REDIRECTED
	181
	

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	INVITE
	RE-INVITE case - mapping ffs

	P_CALL_EVENT_QUEUED
	SIP:182
	

Table 2‑4 TpCallMonitorMode mapping

	Monitor Mode
	SIP
	Remarks

	P_CALL_MONITOR_MODE_INTERRUPT
	N/A
	SIP Server set to observe for SIP event as requested and if encountered interrupt SIP processing, nitify the application and await a request to resume processing.

	P_CALL_MONITOR_MODE_NOTIFY
	N/A
	SIP server set to observe for SIP event as requested and if encountered notify the application.; SIP Procesing continues.

	P_CALL_MONITOR_MODE_DO_NOT_MONITOR
	N/A
	SIP server set not to observe for SIP event –no application interest.

2.2.1.3 destroyNotification
destroyNotification (assignmentID : in TpAssignmentID) : void

This method is used by the application to disable call notifications.

[image: image3.wmf]Participant

SIP

server

SCS

Application

destroyNotification

SIP Server set to stop the observe

for call events to be notified for the

application.

Figure 2‑3 Call Flow DestroyNotification

Normal Operation
	Pre-conditions
	An agreement is established between the network operator and the service provider for the event notification to be disabled

	1
	The application invokes the destroyNotification method

	2
	The SCS requests the SIP serverr to de-activate the active call notification.

Parameter Mapping

None

2.2.1.4 changeNotification

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void

This method is used by the application to change the call notifications previously set by createNotification .

[image: image4.wmf]

Participant

SIP

server

SCS

Application

changeNotification

 SIP Server set to change the

observation for call events to be

notified for the application.

Figure 2‑4 Call Flow for ChangeNotification

Normal Operation

	Pre-conditions
	Notifications have been enabled by the application.

	1
	The application invokes the changeNotification method

	2
	The SCS requests the SIP server to reflect the changed set of notifications.

Parameter Mapping

See TpCallNotificationRequest mapping in section 2.2.1.2

2.2.1.5 getNotification

getNotification () : TpNotificationRequestedSet

This method is used by the application to query the event criteria set with createNotification.

[image: image5.wmf]

Participant

SIP

server

SCS

Application

getNotification

 SIP Server set to retrieve the

information on call events to be

notified for the application.

Figure 2‑5 Call Flow for getNotification
Normal Operation
	Pre-conditions
	Notifications have been enabled by the application.

	1
	The application invokes the getNotification method

	2
	The SCS returns the criteria.

Parameter Mapping
None

2.2.1.6 SetCallLoadControl

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

This method used to impose or remove load control on calls made to a specific address range within the call control service.

[image: image6.wmf]

Participant

SIP

server

SCS

Application

setCallLoadcontrol

Activate load

control

 Figure 2‑6 Call Flow for setCallLoadControl

Normal Operation
	Pre-conditions
	

	1
	The application invokes the setCallLoadControl method to remove or set load control on calls made to a specific address range

	2
	The SCS requests the SIP server to activate or remove call load control

Parameter Mapping

	From: setCallLoadControl
	SIP
	Remarks

	Duration (TpDuration)
	N.A.
	

	Mechanism (TpCallLoadControlMechanism)
	N.A.
	

	Treatment (TpCallTreatment)
	503
	Deny new invitations if oveload prevails.
See Table 2‑5

	AddressRange (TpAddressRange)
	-.
	Not mapped directly but has to be verified for application with SIP.

Table 2‑5 TpCallTreatmentType Mapping
	TpCallTreatmentType
	SIP

	P_CALL_TREATMENT_DEFAULT
	N/A (depends on applied default)

	P_CALL_TREATMENT_RELEASE
	SIP 503: Service Unavailable response sent to deny invite request for a new session .Already established call sessions are not affected

	P_CALL_TREATMENT_SIAR
	SIP 503 or BYE after user interaction if it implies and established session (e.g. to MRF) Service Unavailable response sent to deny invite request for a new session.
 Already established call sessions are not affected .

2.2.2 MPCCS: Call Manager Application Interface

2.2.2.1 managerInterrupted

managerInterrupted () : void
This method is used to indicate to the application that all event notifications and method invocations have been temporarily interrupted, for example due to network resources unavailable.

[image: image7.wmf]

Participant

SIP

server

SCS

Application

mangerInterrupted

 Fault

detected

Figure 2‑7 Call Flow for ManagerInterrupted

Normal Operation
	Pre-conditions
	Call notifications have been enabled using the createNotification method on the Call Manager interface.

	1
	The SCS has detected, or has been informed of, a fault which prevents further events from being notified.

	2
	The SCS invokes the managerInterrupted method

Parameter Mapping
None

2.2.2.2 managerResumed

managerResumed () : void

This method is used to indicate to the application that all event notifications are possible and method invocations are enabled after having previously been interrupted.

[image: image8.wmf]

Participant

SIP

server

SCS

Application

mangerResumed

 Fault

ceased

Figure 2‑8 Call Flow for ManagerResumed

Normal Operation
	Pre-conditions
	Call notifications have been interrupted and managerInterrupted method has been invoked.

	1
	The SCS detects that call notifications are again possible.

	2
	The SCS invokes the managerResumed method

Parameter Mapping

None
2.2.2.3 reportNotification

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : TpAppMultiPartyCallBack

This method is used to notify the application of the arrival of a call-related event. It is sent in response to the createNotification() method

[image: image9.wmf]

Participant

SIP

server

SCS

Application

2 reportNotification

 1 SIP: INVITE, CANCEL; Re

-

INVITE, BYE

Figure 2‑9 Call Flow for reportNotification, incoming SIP message from caller (UAC)

[image: image10.wmf]

Participant

SIP

server

SCS

Application

2 reportNotification

 1 SIP: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re

-

INVITE

Figure 2‑10 Call Flow for reportNotification, incoming SIP message from callee (UAS)

Normal Operation
	Pre-conditions
	Call notifications have been enabled using the createNotification method on the Call Manager interface

	1
	A call arrives or a party decides to issue a mid-call event or disconnect the involvement in an established session This request is detected by the SIP server and the criteria for an intial notification to be reported is checked.

	2
	When the criteria for an initial notification is met, the SCS identifies the application responsible for handling the call and invokes the reportNotification method

Parameter Mapping

	From: SIP INVITE, CANCEL,BYE
	To: reportNotification
	Remarks

	SIP Call ID
No mapping
	CallReference:TpMultiPartiCallIdentifier
	The SCS will create a new call object and associated call leg object and pass them to the application. The call session ID generated by the SCS is different from the SIP call-ID in the INVITE Message. A correlation between SIP call-ID and call session ID is made.

	N/A
	CallLegReferenceSet
	

	
	NotificationInfo (TpCallNotificationInfo)
	

	
	TpCallNotificationReportScope
	See Table 2‑6

	
	CallAppInfo (TpCallAppInfoSet)
	See Table 2‑7

	
	CallEventInfo
	See Table 2‑8

	N/A
	AssignmentID
	

Table 2‑6 TpCallNotificationReportScope mapping table

	Can be mapped to SIP?
	TpCallNotificationReportScope
	Remarks

	SIP Request-URI header field URL
SIP To header field URL
	DestinationAddress , if transaction issued from caller (e.g. INVITE)
OR
OriginatingAddress, if transactin from callee (e.g Re-INVITE, BYE)-
 Note1
	Depends on applied filtering criteria

	SIP From header field URL
	OriginatingAddress, if transaction from caller (e.g. INVITE)
OR
DestinationAddress , if transaction issued from caller (e.g. Re-INVITE, BYE)
Note1
	Depends on appliedfiltering criteria

	N/A
	NotificationCallType (TpNotificationCallType)
	

Note1: In SIP, destination (To: header) and origination address (From: header) are relative to the transaction and not to the call as in OSA.

Table 2‑7 TpCallAppInfo Type mapping Table

	Can be mapped to SIP?
	CallAppInfo (TpCallAppInfoSet)
	Remarks

	N/A
	CallAppAlertingMechanism
	Cannot be mapped as Alert-info is defined in SIP

	N/A
	CallAppNetworkAccessType
	Not mapped. No valid value for SIP in this parameter

	SDP ?
	CallAppTeleService
	To be detailed how to map ?

	Media type from SDP
	CallAppBearerService
	Specifies the type of media indicated in the incoming SDP e.g. data, audio, video.
To be detailed how to map ?

	N/A
	CallAppPartyCategory
	Not mapped.
Not defined in SIP

	May be SIP From header field ?
	CallAppPresentationAddress
	In case the SIP From header and SIP Contact are different, The From header field may be seen as presentation Address since the UA will only use the contact or via address to decide the routing destination.

	?
E..g. convey info in a “container” in SIP when ISC is used ?!.

Open how – needs further study !

	CallAppGenericInfo
	Application dependent information to be conveyed to the application (transported transparently from SIP server to SCS.

	N/A
	CallAppAdditionalAddress
	No mapping: Not fined in SIP

	SIP TO Header field
	CallAppOriginalDestinationAddress
	Even if the call is forwarded or redirected by the SIP server, the TO will be unchanged and will remain the same. So the TO Field always specifies the original destination of the call

	N/A
	CallAppRedirectingAddress
	

Table 2‑8 TpCallEventInfo Mapping Table

	Can be mapped to SIP?
	TpCallEventInfo
	Remarks

	See Table 2‑1

 REF _Ref527445504 \h
Table 2‑1

 REF _Ref527445504 \h
Table 2‑1Table 2‑1

 REF _Ref526927412 \h
 * MERGEFORMAT

Table 2‑1 CallEventType Mapping

Call Event Name

SIP

Remarks

P_CALL_EVENT_UNDEFINED

N/A

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT

N/A

Not applicable to SIP; would mean an empty To: header

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

N/A

P_CALL_EVENT_ADDRESS_COLLECTED

N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

P_CALL_EVENT_ADDRESS_ANALYSED

N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE

INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_ORIGINATING_RELEASE

BYE,
CANCEL

Incoming BYE, CANCEL received from calling party (UAC) on Originating Call Leg in MPCCS.
See corresponding Table for OriginatingReleaseCause datatype TpReleaseCause
for details Table 2‑2
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT

INVITE

Incoming INVITE received at destination requesting the termination of the session to called party

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED

INVITE

Incoming INVITE received at destination requesting the termination of the session to called party.

P_CALL_EVENT_ALERTING

SIP : 180

P_CALL_EVENT_ANSWER

SIP 200

P_CALL_EVENT_TERMINATING_RELEASE

BYE,
4xx, 5xx, 6xx

Incoming BYE, 4xx, 5xx, 6xx received from called party (UAS) on Terminating Call Leg in MPCCS
See corresponding Table TerminatingReleaseCause datatype TpReleaseCause for details Table 2‑3
P_CALL_EVENT_REDIRECTED

181

P_CALL_EVENT_TERMINATING_SERVICE_CODE

INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_QUEUED

SIP:182

	CallEventType
	

	See Table 2‑1
	AdditionalCallEventInfo
	

	See Table 2‑4
	CallMonitorMode
	

	N/A
	CallEventTime
	

2.2.2.4 callAborted

callAborted (callReference : in TpSessionID) : void

This method is used to indicate to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call and the application.

[image: image11.wmf]

Participant

SIP

server

SCS

Application

callAborted

481 Call Leg/transaction Does

Not Exist; Outgoing BYE,

CANCEL, INVITE without any

response

Figure 2‑11 Call Flow for callAborted()

Normal Operation
	Pre-conditions
	

	1
	The SCS detect a failure in its communication with the SIP server

	2
	The SCS, invokes the callAborted method. Since the SIP server reflects the call running in the network, the call could also have been aborted in the network.

Parameter Mapping

None.

2.2.2.5 callOverloadEncountered

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image12.wmf]SIP Server

SCS

Application

callOverLoadEncountered

SIP 503 response

Figure 2‑12 Call flow for CallOverLoadEncountered

Normal Operation
	Pre-conditions
	

	1
	The SCS detect a call overload situation in its communication with the SIP server

	2
	The SCS, invokes the callOverLoadEncountered method. The call running in the network may continue or not depending on the requested treatment at overload in setCallOverloadControl method received previously.

Parameter Mapping
None

Remarks

The Server can specify the length of delay in the retry-After header field. In this case, the SCS can retry the request. Note: The server can also send the SIP 503 response when it refuses connection; the 503 does not always imply that the server is overloaded.

2.2.2.6 callOverloadCeased

callOverloadCeased (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

[image: image13.wmf]SIP Server

SCS

Application

callOverLoadCeased

Any SIP message after certains delay

or on

retry-After

 header expiration

Any SIP message

Figure 2‑13 Call Flow for callOverLoadCeased
Normal Operation
	Pre-conditions
	

	1
	The SCS detect an overload situation has ceased in its communication with the SIP server

	2
	The SCS, invokes the callOverLoadCeased method.

Parameter Mapping

None

2.2.3 MPCCS: Multi-Party Call Service Interface

The multi-party call interface class represents the interface to the multi-party call Service Capability Feature. It provides a structure to allow simple and complex call behaviour.

2.2.3.1 getCallLegs

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

This method is used to obtain references to the current Call Leg objects, associated to the Multi-party call object.

[image: image14.wmf]

Participant

SIP

server

SCS

Application

getCallLegs

Figure 2‑14 Call Flow for getCallLegs()

Normal Operation
	Pre-conditions
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the getCallLegs method

	2
	The SCS returns information about the involved call leg objects

Parameter Mapping

None

2.2.3.2 createCallLeg

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

This method is used to create a new CallLeg object in the SCS.

[image: image15.wmf]

Participant

SIP

server

SCS

Application

createCallLeg

Figure 2‑15 Call Flow for CreateCallLeg()

Normal Operation
	Pre-conditions
	The application has a reference to a Multi-party Call object.

	1
	The application invokes the createCallLeg method

	2
	The SCS creates the requested call leg object

Parameter Mapping

None

2.2.3.3 createAndRouteCallLegReq

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

This method is an asynchronous method used to request the creation of a new Call Leg and the setup of a connection to the indicated address.

[image: image16.wmf]

:

 3c. SIP: 200, 3xx, 4xx, 5xx, 6xx

:

 3a. SIP: 1xx

Participant

SIP

server

SCS

Application

 2. SIP: INVITE

1. createAndRouteCallLegReq

SIP :ACK

Figure 2‑16 Call Flow for createAndRouteCallLegReq()

Normal Operation

	Pre-conditions
	The application has a reference to a Multi-party Call object
The application changes the desitination address.
The SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller allowing BYE to be sent from the application (playing the UA role).

[editor note: other modes still to be described:
Proxy mode]

	1
	The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg object, generates a SIP INVITE message and sends it to the SIP server

	2
	The SIP server forwards the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE being sent by the SIP server (Forking)

	3
	The SIP server forwards the incoming SIP response message to the SCS.

Remarks

The application has no control of the SIP server forking functionality.

Parameter Mapping

	createAndRouteCallLegReq
	SIP Messages
	Remarks

	CallSessionID
	SIP : Call-ID
	There shall be no direct mapping of CallSessionID onto SIP Call-ID to ensure the SIP Call-ID uniqueness, merely a correlation needed. A SIP call ID must be unique and not be reused for later calls.
Acting as a B2BUA a new call_ID is created for the new originating SIP leg for which a correlation with callSessionID is created.

	EventsRequested: TpCallEventRequestSet
	
	Not mapped.

	TargetAddress
	SIP URL in the TO header
	

	OriginatingAddress
	SIP URL in the From
	The originating address may e.g. be the application server SIP address
(third party call set up) or the SCS server when the the SCS is the endpoint (UAC) which initiates the INVITE

	appInfo (TpCallAppInfoSet):
 - TpCallAppInfo:
	See Table 2‑7
	

	AppLegInterface
	N/A
	

	CallLegReference:
	
	

	CallLegReference
	N/A
	

	CallLegSessionID
	
	Acting as B2BUA the SIP call-ID in the outgoing INVITE message can be correlated with the OSA callLegSessionID. Each callLegSessionID is unique within the Multiparty call object, indeed the callLegSessionID will both uniquely identify the leg but also the INVITE(call) to the party.

2.2.3.4 release

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method used to request the release of the call and associated objects.

Remarks: If several legs are connected, this method will also release each of the call legs, e.g calls release() on the IpCallLeg (see 2.2.5.3).

Figure 2‑17 Call Flow for MPCC release()

Normal Operation
	Pre-conditions
	Call is in progress
The SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller allowing BYE to be sent from the application (playing the UA role).

	1
	The application invokes the release method. For all legs associated to the call, the SCS will send a release() method . If the application has requested some reports at the end of the call (e.g., getInforeq(), superviseReq()) these reports will be sent to the application

Parameter Mapping

	From: release
	To: SIP BYE or SIP CANCEL
	Remarks

	CallSessionID
	See 2.2.3.3 Parameter Mapping section

	Only a correlation - no direct mapping

	cause (TpReleaseCause) :
	See Table 2‑9
	

Table 2‑9 TpReleaseCause Table mapping
	TpReleaseCause
	SIP Message
	Remarks

	P_UNDEFINED
	xxx
	All the others SIP response “release” messages (xx) that can not otherwise be mapped.

	P_USER_NOT_AVAILBLE
	404 Not Found

410 Gone

480 Temporarily Unavailable

604 Does Not Exist Anywhere
	484

	P_BUSY
	486 Busy Here

600 Busy EveryWhere
	

	P_NO_ANSWER
	408 Request Timeout

603 Decline
	-No response from participant

	P_NOT_REACHABLE
	301 Moved Permanently

302 Moved Temporarily
	

	P_ROUTING_FAILURE
	400 Bad Request,
482 Loop Detected,
483 Too Many Hops

484 Address Incomplete

485 Ambiguous,
502 Bad Gateway

505 Version Not Supported

	

	P_PREMATURE_DISCONNECT
	SIP CANCEL
	

	P_DISCONNECTED
	SIP BYE
	

	P_CALL_RESTRICTED
	406 Not Acceptable,
606 Not Acceptable
	

	P_UNAVAILABLE_RESOURCE
	503 Service Unavailable
	

	P_GENERAL_FAILURE
	500 Server Internal Error

	

	P_TIMER_EXPIRY
	504 Gateway Timeout
	

2.2.3.5 deassignCall

deassignCall (callSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

[image: image17.wmf]

Participant

SIP

server

SCS

Application

deassignCall

Figure 2‑18 Call Flow for deassignCall()

Normal Operation

	Pre-conditions
	A relationship between the application and the call including associated objects exists.

	1
	The application invokes the deassignCall method

	2
	The SCS terminates the relationship between the application and the call and its associated objects and notifies the SIP server.

	3
	The SIP server is to enable any possible interrupted call processing to continue.

Parameter Mapping

None.

2.2.3.6 getInfoReq

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

This method is an asynchronous method that requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address.

Remarks: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information associated to the call. Indeed the method does not involve SIP mapping.
However, the SCS should use the messages received by the SIP server during the call session in order to sent the corresponding getInfoRes() or getInfoErr() method.

[image: image18.wmf]

Participant

SIP

server

SCS

Application

getInfoReq

Figure 2‑19 Call Flow for getInfoReq()

Normal Operation
	Pre-conditions
	

	1
	The application invokes the getInfoReq method. The SCS monitors the call and will later on send the corresponding getInfoRes() or getInfoErr() based on the messages received from the SIP server.

	2
	

Parameter Mapping

	From:
	To: SIP
	Remarks

	callSessionID
	See 2.2.3.3 Parameter Mapping section

	a correlation – no direct mapping.

	callInfoRequested (TpCallInfoType) :
	N/A
	

2.2.3.7 superviseReq

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : voidThis method is called by the application to supervise a call. The application can set a granted connection time for this call. If an application calls this method before it routes a call the time measurement will start as soon as the call is answered by the called party.

[image: image19.wmf]

Participant

SIP

server

SCS

Application

superviseReq

Figure 2‑20 Call Flow for superviseReq()

Normal Operation

	Pre-conditions
	

	1
	The application invokes the superviseReq method.
The SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller allowing BYE to be sent from the application (playing the UA role).

	
	The application invokes the superviseReq method

[Map if acting in Proxy mode still to be described]

Parameter Mapping

	From: superviseReq
	To: SIP
	Remark:

	callSessionID
	See 2.2.3.3 Parameter Mapping section
	No direct mapping – a correlation

	Time
	SIP 200 OK / ACK
	No direct mapping , but specified call supervision timer is to start upon the detection of answer event.

	Treatment (TpCallSuperviseTreatment) :
	N/A
	No direct mapping.
Defines the treatment of the call by the call control service when the call supervision timer expires, e.g. release call (BYE) and /or send warning tone to calling party.

2.2.3.8 setAdviceOfCharge

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

This method allows the application to determine the charging information that will be send to the end-users terminal.

[image: image20.wmf]

Participant

SIP

server

SCS

Application

setAdviceOfCharge

 SIP Server impact ?

Figure 2‑21 Call Flow for setAdviceOfCharge()

Normal Operation

	Pre-conditions
	

	1
	The application invokes the setAdviceOfCharge method

Parameter Mapping

	From: setAdviceOfCharge
	To: SIP
	Remarks

	callSessionID
	
	

	AOCInfo (TpAoCInfo):

· CurrentCAI

· NextCAI

	N/A ?
	Information relevant to application and SCS not to signalling

	TariffSwitch (TpDuration)
	N/A ?
	Information relevant to application and SCS not to signalling

2.2.3.9 setChargePlan

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setCallChargePlan is a method that allows the application to set an operator specific charge plan for the call enabling to include charging information in network generated CDR.

[image: image21.wmf]

Participant

SIP

server

SCS

Application

setChargePlan

 SIP Server set to create CDR ??

Figure 2‑22 Call Flow for setChargePlan()

Normal Operation

	Pre-conditions
	

	1
	The application invokes the setChargePlan

Parameter Mapping

	From: setlChargePlan
	To:
	Remarks

	callSessionID
	See 2.2.3.3 Parameter Mapping section
	

	callChargePlan

	N/A
	Information relevant to application and SCS not to signalling

2.2.4 MPCCS: Multi-Party Call Application Interface

2.2.4.1 createAndRouteCallLegErr

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid address, the request was refused, etc).

Figure 2‑23 Call Flow for createAndRouteCallLegErr()
Normal Operation

	Pre-conditions
	Application has sent CreateAndRouteCallLegReq() , a request to route the call to the destination party. INVITE may be sent to the participant.

	1
	The request is refused e.g. the SIP server detects an error and notifies the SCS.

	2
	The SCS invokes the createAndRouteCallLegErr method

Parameter Mapping

	CreateAndRouteCallLegErr
	SIP Messages
	Remarks

	CallSessionID
	See 2.2.3.3 Parameter Mapping section
	No direct mapping – a correlation

	CallLegReference: TpCallLegIdentifier
	See 2.2.3.3 Parameter Mapping section
	

	errorIndication : TpCallError
	
	

	ErrorTime
	N/A
	Time should be provided locally by SCS.

Note:
In order to have the accurate time, the Timestamp header field may be added to the SIP send by the participant or the SIP server.
However, it is not possible to rely on timestamp to be recived in message.

	ErrorType
	See Table 2‑10
	

	AdditionnalErrorInfo
	See Table 2‑10
	

Table 2‑10 TpCallErrorType mapping table
	Error Name
	SIP Message

	P_CALL_ERROR_UNDEFINED
	Undefined

	P_CALL_ERROR_INVALID_STATE
	481 CallLeg Transaction Does Not Exist

	P_CALL_ERROR_INVALID_ADDRESS
	400 Bad Request,

404 Not Found
413 Request Entity Too Large

414 Request URI Too Large

484 Address Incomplete

485 Ambigous

2.2.4.2 callEnded

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

This method is invoked when the call has terminated in the network. Furthermore, the operation contains an indication on the reason why the call has been ended. The method will always be invoked when the call is ended.

Remarks: The callEnd() method is sent to the application when the last leg has released or the call itself was released or no party has answered the call. This method does not require any SIP mapping. It reflects the call state in the SCS. The multiparty call release method mapping can be found in section 2.2.3.4, the call leg release method mapping can be found in section 2.2.5.3.

Figure 2‑24 callEnded() call Flow
Normal Operation

	Pre-conditions
	There is an application monitoring the call in some way.

	1
	The SCS detects that there is no leg connected to the call or the call has been released . The SCS invokes the callEnded method.

Parameter Mapping

	callEnded()
	SIP
	Remarks

	CallSessionID
	See 2.2.3.3 Parameter Mapping section
	

	report : in TpCallEndedReport
	
	

	CallLegSessionID
	See 2.2.3.3 Parameter Mapping section
	

	Cause: TpReleaseCause
	See TpReleaseCause Mapping Table 2‑9
	

2.2.4.3 getInfoRes

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

This is an asynchronous method that reports all the necessary information requested by the application, for example to calculate charging.

[image: image22.wmf]

Participant

SIP

server

SCS

Application

getInfoRes

Figure 2‑25 Call Flow for getInfoRes()

Normal Operation

	Pre-conditions
	Call is in progress. The application has requested information associated with a call via the getInfoReq method

	1
	The SCS received message from SIP Server. The message can be related to other SIP methods, e.g., the application has previously sent release(), the SCS has generated the SIP BYE message, the participant has sent the 200 Ok in response.
The SCS detects that the call is terminated. The SCS invokes the getInfoRes() method.

Parameter Mapping

	GetInfoRes()
	SIP
	Remarks

	CallSessionID
	See 2.2.3.3 Parameter Mapping section
	

	CallInfoReport (TpCallInfoReport):
	
	

	CallInfoType: TpCallInfoType
	N/A
	

	CallInitiationStartTime
	N/A
	The time when the SCS sent the SIP INVITE message to the SIP server should be stored by the SCS and used as this parameter value

	
	
	

	CallConnectedToResourceTime
	N/A
	

	CallConnectedToDestinationTime
	N/A
	The moment the party received the ACK message for the INVITE. This information may be provided by the SIP server

	CallEndTime
	N/A
	Moment when SIP BYE message is sent to participant or received from the participant..

	Cause: TpReleaseCause
	See Table 2‑9
	

2.2.4.4 getInfoErr

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void
This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

[image: image23.wmf]

Participant

SIP

server

SCS

Application

getInfoErr

Figure 2‑26 Call Flow for getInfoErr()

Normal Operation

	Pre-conditions
	The application has requested information associated with a call via the getInfoReq method

	1
	The original request getInfoReq is erroneous or cannot be accepted due to e.g. call terminates abnormally.

	2
	The SCS identifies the correct applications that requested the call information and invokes the getCallInfoErr method.

Parameter Mapping
See section 2.2.4.1 parameter mapping

2.2.4.5 superviseErr

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call supervision error to the application.

[image: image24.wmf]

Participant

SIP

server

SCS

Application

superviseErr

Figure 2‑27 Call Flow for superviseErr()

Normal Operation

	Pre-conditions
	The application has requested information associated with a call via the superviseReq method

	1
	The SCS detects an error that can affect call supervision, e.g call routing error. The SCS identifies the correct applications that requested the call information and invokes the superviseErr method.

Parameter Mapping
See section 2.2.4.1 parameter mapping

2.2.4.6 superviseRes

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

This is an asynchronous method that reports a call supervision event to the application.

[image: image25.wmf]

Participant

SIP

server

SCS

Application

superviseRes

Figure 2‑28 Call Flow for superviseRes()
Normal Operation
	Pre-conditions
	The application has invoked the supervise method. The specified call supervision timer expires.
The SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller allowing BYE to be sent from the application (playing the UA role).

	1
	The SCS detects that the supervision time is expired and acts according to the requested treatment (e.g. release call sending BYE) in superviseReq The SCS identifies the correct application and invokes the superviseRes method.

Parameter Mapping

None

2.2.5 MPCCS: CallLeg Service Interface

The call leg interface class represents the logical call leg associating a call with an address.
The leg represents the signalling relationship between the call and an address.

2.2.5.1 routeReq

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

routeReq is an asynchronous method used to request routing of the call leg to the remote party indicated by the target address.

The call flow for this method is the same as the createCallAndRouteReq() method. However, the difference remains on the connectionProperties parameter value.
 See Figure 2‑16 Call Flow for createAndRouteCallLegReq()
If the connectionProperties parameter value is set to P_CALLLEG_ATTACH_IMPLICITLY means that the callLeg should be implicitly attached to the call. In this case, the mapping to SIP is done naturally since in SIP, the natural behavior is to start media session with others parties in the call once the signaling is established(INVITE, 200 OK, ACK)

[image: image26.wmf]

1. routeReq

 connectionProperties sets to

P_CALLLEG_ATTACH_EXPLICITL

Y

:

 3c. SIP: 200 OK

:

 3a. SIP: 1xx

Participant

SIP

server

SCS

Application

3b. eventReportRes

 2. SIP: INVITE

3d. eventReportRes

SIP :ACK

Figure 2‑29 Call Flow for routeReq() : leg attached explicitly

Normal Operation

Same as section 2.2.4.1 . For the routeReq() method, the SCS does not create a new call object since the method is called on the call leg object

SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller (playing the UA role).

[Map if acting in Proxy mode still to be described]

Parameter Mapping

	routeReq()
	SIP
	Remarks

	callLegSessionID
	
	See remarks in section 2.2.3.3

	targetAddress
	SIP URL in the TO header
	

	originatingAddress
	SIP URL in the From
	

	originalCalledAddress
	N/A
	

	redirectingAddress
	N/A
	This address can be put in the SIP contact header Field, indeed, the SIP server can fork the INVITE to this destination too.

	appInfo (TpCallAppInfoSet)
	See Table 2‑7
	

	connectionProperties
	
	

	P_CALLLEG_ATTACH_IMPLICITLY
	N/A
	SIP ACK message directly sent

	P_CALLLEG_ATTACH_EXPLICITLY
	
	Attach method need to be called by the application. For attachMedia() mapping see: 2.2.5.7

2.2.5.2 eventReportReq

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

This method is an asynchronous method used to set, clear or change criteria for the events that the Call Leg object will observe.

Remarks: Same as 2.2.3.6

[image: image27.wmf]Participant

SIP

server

SCS

Application

eventReportReq

Figure 2‑30 Call Flow for eventReportReq()

Normal Operation

	Pre-conditions
	The application has been notified of a new call and the call and call leg objects exists.

	1
	The application invokes the eventReportReq method. The SCS monitors the call and will later on send the corresponding eventReportRes() or eventReportErr() based on the messages received from the SIP server.

Parameter Mapping

	eventReportReq
	SIP
	Remarks

	CallLegSessionID
	
	

	EventsRequested (TpCallEventRequestSet)
	
	See 2.2.1.2 Parameter mapping section

2.2.5.3 release

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method used to request the release of the call leg.

[image: image28.wmf]

Note: The participant is already

 connected: SIP: INVITE 200 OK

-

ACK messages have been exchanged

from createAndRouteCallLegReq() or

ro

uteReq() methods

:

 3. SIP: 200 OK

Participant

SIP

server

SCS

Application

 2a. SIP: BYE

1a. release

Figure 2‑31 Call Flow for release. The participant is already connected

[image: image29.wmf]

Note: The participant is not yet

 connected: SIP: INVITE has been

sent, but 200 OK

-

 ACK

messages have not been e

xchanged

:

 3. SIP: 200 OK

Participant

SIP

server

SCS

Application

 2b. SIP: CANCEL

1b. release

SIP: 1xx

SIP: INVITE

Figure 2‑32 Call Flow for release, pending call toward participant

Normal Operation
	Pre-conditions
	Call is in progress
SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller (playing the UA role).

	1
	The application or the SCS invokes the release method (scenario a, b). The SCS generates the SIP message(BYE in scenario 2a and CANCEL in 2c) and sends it to the SIP server.

	2a
	The SIP server sends the BYE Message toward the participant connected to the call

	2b
	The SIP server sends the CANCEL Message toward the participants associated to the call but not connected yet.

[image: image30.wmf]

Note: The participant is already

 connected: SIP: 200 OK

-

 ACK

messages have been exchanged

:

 3. SIP: 200 OK

Participant

SIP

server

SCS

Application

 2a. SIP: BYE

1a. release

SIP: ACK

SIP: 200

 OK

Figure 2‑33 Call Flow for release, participant connected

[image: image31.wmf]

Note: The participant is not yet

 connected: SIP: INVITE has been

sent, but 200 OK

-

 ACK

messages have not been e

xchanged

:

 3. SIP: 200 OK

Participant

SIP

server

SCS

Application

 2b. SIP: CANCEL

1b. release

SIP: 1xx

SIP: INVITE

Figure 2‑34 Call Flow for release(), pending call attempt toward participant

[image: image32.wmf]

Note: The participant is not yet

conneced.

SIP: Invite has been recived, no

 200 OK - ACK messages have been

exchanged.

:

 3c. SIP: ACK

Participant

SIP

server

SCS

Application

 SIP: 1xx

4c. release

2c.

SIP: 3xx, 4xx, 5xx, 6xx

SIP: INVITE

3c. eventReportRes()

Figure 2‑35 Call Flow for release, participant does not answer

Normal Operation

	Pre-conditions
	Call Leg is in progress
SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller (playing the UA role).

	1
	The application invokes the release method (scenario a, b and c)

	2a
	The SIP server sends BYE toward the participant connected in the call

	2b
	The SIP server sends CANCEL toward the participant not yet connected in the call and for which it has a call attempt pending.

	2c
	The participant does not answer the call. It can be busy, not available.

	3c
	The SCS acknowledges the response, notifies the application

	4c(optional)
	Application decides to release the call Leg

Parameter Mapping
Same as 2.2.3.4 .

2.2.5.4 getInfoReq

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

Same concept as getInfoReq() in 2.2.3.6 for multiparty call object.

2.2.5.5 getCall

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

This method used to retrieve the reference of the Call associated with the Call leg object.

[image: image33.wmf]

Participant

SIP

server

SCS

Application

getCall

Figure 2‑36 Call Flow for getCall()

Normal Operation

	Pre-conditions
	A call object is created.

	1
	The application invokes the getCall method

	2
	The SCS returns the reference of the associated call object.

Parameter Mapping

None.
See remarks on callLegSessionId in 2.2.3.3
2.2.5.6 continueProcessing

continueProcessing (callLegSessionID : in TpSessionID) : void

This method used to continue processing of the call.

[image: image34.wmf]Participant

SIP

server

SCS

Application

continueProcessing

 SIP call processing resumed

- processing of any interupted

 SIP message is resumed.

-

Figure 2‑37 Call flow for continueProcessing

Normal Operation

	Pre-conditions
	Call processing has suspended and the application is informed of call related events in interrupt mode.

	1
	The application invokes the continueProcessing method to resume call processing

	2
	The SCS will requests the SIP server to resume processing , when the call is to be resumed

Parameter Mapping

None. See remarks on callLegSessionId in 2.2.3.3
2.2.5.7 attachMedia

attachMedia (callLegSessionID : in TpSessionID) : void

This method used to request that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

In this scenario is shown the putting the media streams on hold while the session is established.
Another scenario would be that detachMedia method would have been called previously..

The application requests with attachMedia to attach the media.
A new INVITE (Re-INVITE) will be sent to the participant with the media session description using the SDP on Hold feature. See Appendix B for RFC2543 (SIP) [2]

Figure 2‑38 Call flow for attachMedia(): SDP on Hold

Normal Operation

	Pre-conditions
	AttachMedia is not executed until the connected state is reached (200 OK) , i.e. if received before the SCS should buffer the request until it can be executed..

SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller (playing the UA role).

	1
	Application request the media attachment for this leg

	2
	The SCS generates a new SIP INVITE message to be sent to the participant. In this case the attachMedia() method is mapped onto the INVITE-200 OK - ACK messages.

Parameter Mapping

None. See remarks on callLegSessionId in 2.2.3.3
Remarks: The new INVITE sent to the participant does not issue a new SIP session, it is only updating the previous SIP session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media description has changed.

2.2.5.8 detachMedia

detachMedia (callLegSessionID : in TpSessionID) : void

This method is used to detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Figure 2‑39 Call Flow for dettachMedia()
Normal Operation

	Pre-conditions
	The leg is in a connection state and has a bearer connection established with the others legs in the call.
SIP server (SCS) acts as a B2BUA, UA or 3rd Party u controller (playing the UA role).

	1
	The application prevents the transmission of media connection to this leg by calling the dettachMedia().

	2
	The SCS generates a SIP INVITE message with an SDP on hold.

Parameter Mapping

None. See remarks on callLegSessionId in 2.2.3.3
2.2.5.9 getLastRedirectedAddress

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

getLastRedirectedAddress() is sent by the application to the leg to get the last address the leg has been redirected to.

Figure 2‑40 Call Flow for getLastRedirectedAddress()

Normal Operation

	Pre-conditions
	The leg is in a connection.
When route call was invoked, the SIP server returned an response code of 301 or 302 to the SCS with the user new location in the contact header field.

	1
	The SCS returns the redirected address in the method return parameter.

Parameter Mapping

None. See remarks on callLegSessionId in 2.2.3.3
2.2.6 MPCCS: CallLeg Application Interface

2.2.6.1 routeErr

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr is a method used to indicate that the request to route the call to the destination party was unsuccessful (for example parameters were incorrect, the request was refused, etc).

Same mapping concept as createAndRouteCallLegErr() in 2.2.4.1 for multiparty call object.

2.2.6.2 eventReportRes

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

this asynchronous method is used to report that an event has occurred on the call leg that was requested to be reported (for example , a mid-call event from the party; the party has requested to disconnect; etc.).

[image: image35.wmf]Participant

SIP

server

SCS

Application

2. eventReportRes

Note 1: any appropriate SIP

message:INVITE, 1xx, 2xx, 3xx,

4xx, 5xs, 6xx, ?

1. SIP: see Note 1

Figure 2‑41 Call Flow for eventReportRes()

Normal Operation

	Pre-conditions
	The application requested to be notified of the event with eventReportReq and this specific event has occurred in the network.

	1
	The SCS receives SIP messages (response or request) that can be mapped to an event to be reported (see
Table 2‑1 CallEventType Mapping

Call Event Name

SIP

Remarks

P_CALL_EVENT_UNDEFINED
N/A

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
N/A

Not applicable to SIP; would mean an empty To: header

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
N/A

P_CALL_EVENT_ADDRESS_COLLECTED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

P_CALL_EVENT_ADDRESS_ANALYSED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_ORIGINATING_RELEASE
BYE,
CANCEL

Incoming BYE, CANCEL received from calling party (UAC) on Originating Call Leg in MPCCS.
See corresponding Table for OriginatingReleaseCause datatype TpReleaseCause
for details Table 2‑2
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party.

P_CALL_EVENT_ALERTING
SIP : 180

P_CALL_EVENT_ANSWER
SIP 200

P_CALL_EVENT_TERMINATING_RELEASE
BYE,
4xx, 5xx, 6xx

Incoming BYE, 4xx, 5xx, 6xx received from called party (UAS) on Terminating Call Leg in MPCCS
See corresponding Table TerminatingReleaseCause datatype TpReleaseCause for details Table 2‑3
P_CALL_EVENT_REDIRECTED
181

P_CALL_EVENT_TERMINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_QUEUED
SIP:182

).

	2
	The SCS invokes the eventReportRes() method.

Parameter Mapping

	eventReportRes
	SIP
	Remarks:

	CallLegSessionID
	See remarks on callLegSessionId in 2.2.3.3

	

	eventInfo (TpCallEventInfo)
	
	

	CallEventType
	See
Table 2‑1 CallEventType Mapping

Call Event Name

SIP

Remarks

P_CALL_EVENT_UNDEFINED
N/A

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
N/A

Not applicable to SIP; would mean an empty To: header

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
N/A

P_CALL_EVENT_ADDRESS_COLLECTED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

P_CALL_EVENT_ADDRESS_ANALYSED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_ORIGINATING_RELEASE
BYE,
CANCEL

Incoming BYE, CANCEL received from calling party (UAC) on Originating Call Leg in MPCCS.
See corresponding Table for OriginatingReleaseCause datatype TpReleaseCause
for details Table 2‑2
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party.

P_CALL_EVENT_ALERTING
SIP : 180

P_CALL_EVENT_ANSWER
SIP 200

P_CALL_EVENT_TERMINATING_RELEASE
BYE,
4xx, 5xx, 6xx

Incoming BYE, 4xx, 5xx, 6xx received from called party (UAS) on Terminating Call Leg in MPCCS
See corresponding Table TerminatingReleaseCause datatype TpReleaseCause for details Table 2‑3
P_CALL_EVENT_REDIRECTED
181

P_CALL_EVENT_TERMINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_QUEUED
SIP:182

	

	AdditionalCallEventInfo
	See
Table 2‑1 CallEventType Mapping

Call Event Name

SIP

Remarks

P_CALL_EVENT_UNDEFINED
N/A

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
N/A

Not applicable to SIP; would mean an empty To: header

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED
N/A

P_CALL_EVENT_ADDRESS_COLLECTED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and no location service lookup performed yet, i.e. before destination address determined.

P_CALL_EVENT_ADDRESS_ANALYSED
N/A

No direct mapping to any SIP Method/Response.
May somehow correspond to the point in processing where INVITE is received and destination address is determined after location service lookup has been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_ORIGINATING_RELEASE
BYE,
CANCEL

Incoming BYE, CANCEL received from calling party (UAC) on Originating Call Leg in MPCCS.
See corresponding Table for OriginatingReleaseCause datatype TpReleaseCause
for details Table 2‑2
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
INVITE

Incoming INVITE received at destination requesting the termination of the session to called party.

P_CALL_EVENT_ALERTING
SIP : 180

P_CALL_EVENT_ANSWER
SIP 200

P_CALL_EVENT_TERMINATING_RELEASE
BYE,
4xx, 5xx, 6xx

Incoming BYE, 4xx, 5xx, 6xx received from called party (UAS) on Terminating Call Leg in MPCCS
See corresponding Table TerminatingReleaseCause datatype TpReleaseCause for details Table 2‑3
P_CALL_EVENT_REDIRECTED
181

P_CALL_EVENT_TERMINATING_SERVICE_CODE
INVITE

RE-INVITE case - mapping ffs

P_CALL_EVENT_QUEUED
SIP:182

	

	CallMonitorMode
	See Table 2‑4
	

	CallEventTime
	N/A
	Same remarks as 2.2.4.1 for time

2.2.6.3 eventReportErr

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

eventReportErr is an asynchronous method used to indicate that the request to manage call leg event reports was unsuccessful (for example, parameters were incorrect, the request was refused, etc).

Same mapping concept as section 2.2.4.4

2.2.6.4 callLegEnded

callLegEnded method is used to indicate to the application that the leg has terminated in the network. The application has received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Same concept as callEnded() defined in multiparty call object. See 2.2.4.2
2.2.6.5 getInfoRes

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoRes is an asynchronous method that is used to report all the necessary information requested by the application, for example to calculate charging.
Same concept as getInfoRes() defined in multiparty call object. See 2.2.4.3
2.2.6.6 getInfoErr

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoErr is an asynchronous method that reports that the original request was erroneous, or resulted in an error condition.

Same concept as getInfoErr() defined in multiparty call object. See 2.2.4.4
2.2.6.7 superviseErr

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseErr is an asynchronous method that reports a call leg supervision error to the application.
Same concept as superviseErr() defined in multiparty call object. See 2.2.4.5
2.2.6.8 superviseRes

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

superviseRes is an asynchronous method that reports a call leg supervision event to the application.

Same concept as superviseRes() defined in multiparty call object. See 2.2.4.6
SCS

SIP server

Participant

 ACK

 SIP:INVITE sent previously to participant

 400,404, 413,414,481,484,485

createAndRouteCallLegErr

Application

SCS

SIP server

Participant

 release

Application

SCS

SIP server

Application

CallEnded()

SCS detects that call has been released or the call in terminated in the network(e.g., last leg released or disconnect)

Participant

SIP server

SCS

Application

RouteReq() sent with connectionPropertirs set to P_CALLLEG_ATTACH_EXPLICITLY

SIP: INVITE

SIP: 200 OK

ACK SDP held

attachMedia()

SIP: INVITE

SIP: 200 OK

ACK

eventReportRes()

Participant

SIP server

SCS

Application

The leg has already routed and connected and then the application requests to dettach the leg

dettachMedia()

SIP: INVITE SDP held

SIP: 200 OK

ACK

Participant

SIP server

SCS

Application

getLastRedirectedAddress()

� Contact information: Jørgen Dyst, Ericsson , Denmark, e-mail: jorgen.dyst@lmd.ericsson.se,�Kindy Sylla, , Ericsson Research, Montreal, Canada, e-mail: Kindy.Sylla@lmc.ericsson.se

1

_1062343540.doc

Participant

SIP server

SCS

Application

createCallLeg

_1062400602.doc

Participant

SIP server

SCS

Application

createCall

_1064490915.doc

Participant

SIP server

SCS

Application

 1 SIP: 1xx, 200, 3xx, 4xx, 5xx, 6xx, BYE, Re-INVITE

2 reportNotification

_1064494804.doc

Participant

SIP server

SCS

Application

481 Call Leg/transaction Does Not Exist; Outgoing BYE, CANCEL, INVITE without any response

callAborted

_1064584229.doc

Participant

SIP server

SCS

Application

 2. SIP: INVITE

3b. eventReportRes

: 3a. SIP: 1xx

: 3c. SIP: 200 OK

3d. eventReportRes

1. routeReq � connectionProperties sets to P_CALLLEG_ATTACH_EXPLICITLY

SIP :ACK

_1064585492.doc

Participant

SIP server

SCS

Application

 2a. SIP: BYE

: 3. SIP: 200 OK

 Note: The participant is already� connected: SIP: INVITE 200 OK - ACK messages have been exchanged from createAndRouteCallLegReq() or routeReq() methods

1a. release

_1064572183.doc

Participant

SIP server

SCS

Application

 2. SIP: INVITE

: 3a. SIP: 1xx

: 3c. SIP: 200, 3xx, 4xx, 5xx, 6xx

1. createAndRouteCallLegReq

SIP :ACK

_1064490957.doc

Participant

SIP server

SCS

Application

 1 SIP: INVITE, CANCEL; Re-INVITE, BYE

2 reportNotification

_1064144175.doc

SIP Server

SCS

Application

SIP 503 response

callOverLoadEncountered

_1064234947.doc

Participant

SIP server

SCS

Application

eventReportReq

_1064301327.doc

Participant

SIP server

SCS

Application

 SIP call processing resumed� - processing of any interupted� SIP message is resumed.�-

continueProcessing

_1064308542.doc

Participant

SIP server

SCS

Application

Note 1: any appropriate SIP message:INVITE, 1xx, 2xx, 3xx, 4xx, 5xs, 6xx, ?�

2. eventReportRes

1. SIP: see Note 1

_1064300659.doc

Participant

SIP server

SCS

Application

 SIP: 1xx

 2c. SIP: 3xx, 4xx, 5xx, 6xx

: 3c. SIP: ACK

 Note: The participant is not yet conneced.�SIP: Invite has been recived, no� 200 OK - ACK messages have been exchanged.

3c. eventReportRes()

4c. release

SIP: INVITE

_1064145346.doc

SIP Server

Any SIP message after certains delay or on retry-After header expiration

SCS

Application

callOverLoadCeased

Any SIP message

_1063798499.doc

Participant

SIP server

SCS

Application

SIP Server set to stop the observe for call events to be notified for the application.

destroyNotification

_1062564837.doc

Participant

SIP server

SCS

Application

superviseRes

_1062354971.doc

Participant

SIP server

SCS

Application

getInfoReq

_1062355751.doc

Participant

SIP server

SCS

Application

getInfoErr

_1062357684.doc

Participant

SIP server

SCS

Application

superviseErr

_1062360163.doc

Participant

SIP server

SCS

Application

getCall

_1062357019.doc

Participant

SIP server

SCS

Application

superviseReq

_1062355044.doc

Participant

SIP server

SCS

Application

getInfoRes

_1062346755.doc

Participant

SIP server

SCS

Application

deassignCall

_1062354728.doc

Participant

SIP server

SCS

Application

 SIP Server impact ?

setAdviceOfCharge

_1062335141.doc

Participant

SIP server

SCS

Application

 Fault detected

mangerInterrupted

_1062336201.doc

Participant

SIP server

SCS

Application

Activate load control

setCallLoadcontrol

_1062339756.doc

Participant

SIP server

SCS

Application

getCallLegs

_1062335805.doc

Participant

SIP server

SCS

Application

 Fault ceased

mangerResumed

_1062334581.doc

Participant

SIP server

SCS

Application

 SIP Server set to change the observation for call events to be notified for the application.

changeNotification

_1062334639.doc

Participant

SIP server

SCS

Application

 SIP Server set to retrieve the information on call events to be notified for the application.

getNotification

_1062249525.doc

Participant

SIP server

SCS

Application

 SIP Server set to create CDR ??

setChargePlan

_1062332295.doc

Participant

SIP server

SCS

Application

 SIP Server set to observe for�call events to be notified.

createNotification

_1061480215.doc

Participant

SIP server

SCS

Application

 2a. SIP: BYE

 SIP: ACK

: 3. SIP: 200 OK

 Note: The participant is already� connected: SIP: 200 OK - ACK �messages have been exchanged

1a. release

SIP: 200 OK

_1061480243.doc

Participant

SIP server

SCS

Application

 2b. SIP: CANCEL

 SIP: 1xx

: 3. SIP: 200 OK

 Note: The participant is not yet� connected: SIP: INVITE has been sent, but 200 OK - ACK �messages have not been exchanged

1b. release

SIP: INVITE

