Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-011092
Meeting #14, Brighton, UK, 16 – 19 October 2001

CR-Form-v4

CHANGE REQUEST

(

29.198-4
CR
CRNum
(

rev
-
(

Current version:
4.1.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

CORRECTION to Generic Call Control

Source:
(

Richard Stretch E-Mail: richard.stretch@bt.com

Work item code:
(

OSA

Date: (

2001/10/10

Category:
(

F

Release: (

REL-4

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

The description of States for the IpCall STD in Sec 6.4.2 describe more than exist within the diagram.

Summary of change:
(

Delete the description of states that are not applicable to this diagram.

Consequences if
(

not approved:
Incorrect STD descriptions

Clauses affected:
(

Section 6.4.2 - 6.4.2.14

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
Resulting changes

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state transition diagram valid for 3GPP (UMTS) release 99.

[image: image1.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state No Parties and Finished, a timer

should prevent the object from occupuing

resources.

Upon expiry of this timer, callEnded() should

be invoked with a release cause of 102

(Recovery on timer expiry). In case when no

IpAppCall is available on which to invoke

callEnded(), callAborted() shall be invoked

on the IpAppCallControlManager as this is

an abnormal termination

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

superviseCallReq

setAdviceOfCharge

IpAppCallControlManager.callEventNotify

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"call supervision event"^superviseCallRes

"network event received for which was monitored[routeRes]

setCallChargePlan

getCallInfoReq

"answer"

"connection to called party

unsuccessful"[monitor mode = interrupt]

^routeRes

"routing aborted or invalid address" ^routeErr

"disconnect from called party"[monitor mode =

interrupt] ^routeRes, getCallInfoRes,

superviseCallRes

routeReq

Figure : 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Finished.
6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
4.1.1.1

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan..
6.4.2.5 1 Party in Call State

In this state there is one party in the call.
In this state the application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInforeq(). The setCallChargePlan() and getCallInforeq() should be issued before requesting a connection to a second party in the call by means of routeReq().
Two cases apply: network initiated calls and application initiated calls.
In case the call originated from the network the application can now request for more digits in case more digits are needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callEnded(). When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the call was setup by the application and the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq().
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().
When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
In this state user interaction is possible unless there is an outstanding routing request.
6.4.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.
4.1.1.2

[image: image2.wmf]Network Released

Finished

Application

Released

In state Finshed and No Parties, a timer

mechanism should prevent the object from

occupying resources. Upon the expiry of

this timer, callEnded() should be invoked

with a release cause of 102 (Recovery on

timer expiry). In the case when no

IpAppCall is available on which to invoke

callEnded(), callAborted() shall be invoked

on the IpAppCallControlManager as this is

an abnormal termination.

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

routeReq[only 1 outstanding routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

"party released"[no more outstanding

requests]

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

setAdviceOfCharge

setCallChargePlan

getCallInfoReq

superviseCallReq

createCall

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall

release

timeout ^callFaultDetected("timeout on release")

deassignCall

release

"fault in retrieval of information"

^getCallInfoErr, superviseCallErr

[no reports requested with getCallInfoReq AND superviseCallReq]

"requested information ready"

^getCallInfoRes, superviseCallRes

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

release

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

deassignCall

Figure : Application view on the IpCall object

6.4.2.7 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Finished.
6.4.2.8 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
6.4.2.9 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
6.4.2.10 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().
6.4.2.11 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan..
6.4.2.12 1 Party in Call State

In this state there is one party in the call.
In this state the application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInforeq(). The setCallChargePlan() and getCallInforeq() should be issued before requesting a connection to a second party in the call by means of routeReq().
Two cases apply: network initiated calls and application initiated calls.
In case the call originated from the network the application can now request for more digits in case more digits are needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callEnded(). When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the call was setup by the application and the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq().
In this state the application can also request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of routeReq().
When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
In this state user interaction is possible unless there is an outstanding routing request.
6.4.2.13 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
In this state user interaction is possible, depending on the underlying network.
6.4.2.14 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

