3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #13, Munich, GERMANY, 11 – 14 September 2001
N5-010815

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Errors and Corrections required for 120070 specifications
Agenda Item:

Document for:
Approval
Category:
TS
Work Item ID:
OSA1
Doc Summary:
This document contains a list of error corrections that need to be made to the ETSI 120070 series of specifications.

Specs involved:
120070-1, 2, 3, 4, 5, 6, 8, 9, 11 & 12
This document contains a list of error corrections and clarifications that must be made to the ETSI 120070. Lucent feels that these changes are necessary in order to provide an understandable, readable and, above all, correct specification.

120070-1
- OVERVIEW

Section 4 needs to state that interface 4 (EntOp->FW) is also covered by the API. Are interfaces 5 & 6 also covered?

Section 6.4 needs to be updated to show the full naming scheme for exceptions, i.e. TpCommonExceptions, P_***_***

120070-2
- COMMON DATA

5.1.15
This talks about one application having two instances of the same service manager, which is not allowed (see definition of selectService).

5.4
The specification is not particularly clear as it does not specify that ALL exceptions contain the extraInformation field.

120070-3
 - FRAMEWORK

6.1.1.3 and 6.1.1.4 Should say : ...the client and the framework can mutually authenticate each other." The "can" needs to be added in to show that mutual authentication is optional.

6.1.1.4 The authenticationSuceeded method isn’t shown.

6.3.1.3 IpInitial. Remove the word "mutual" from the interface description and from the initiateAuthentication method description.

6.3.1.3 IpInitial.initiateAuthentication. The parameter description of the clientDomain needs to be updated to replace "registered service (i.e. TpServiceID)" with "instance of a registered service (i.e. TpServiceInstanceID)".

6.3.1.5 IpAPILevelAuthentication. Remove the word "mutual"

6.3.1.5 authenticate(): clientAppID should be replaced by domainID (as the client could be a service instance, or an enterprise operator, etc.

6.3.1.5 and 6.3.1.1 abortAuthentication(): The 3rd and 4th references to "client" should be replaced with framework". The final sentence should be reworded to specifically state that this method removes the client's authentication with the framework and also that it ceases any ongoing authentication processes. 6.3.1.1 should be modified in a similar manner.

"If this method has been invoked, the client will no longer be authenticated with the framework (if it already had been) and any authentication processes between the client and the framework shall be aborted. Calls to the requestAccess method on IpAPILevelAuthentication will throw the P_ACCESS_DENIED exception, until the client has re-authenticated with the framework."

6.4.1.2 The transition from All States to the sink state should be labelled "abortAuthentication" and "IpAccess.endAccess".

7.3.3.6 IpHeartBeat.pulse(). Last sentence of method description should be "If the pulse() is not received within the specified interval, then the client application can be deemed to have failed the heartbeat." The text currently says that the framework can be deemed to have failed, which is incorrect.

8 Figure X Multiple Enterprise Operators: The client app in the bottom right should be called "Client App 7", not "Client App 1".

8.1.1.1 The third paragraph states that the "service not subscribed" exception is raised. This should probably be the "P_SERVICE_ACCESS_DENIED" exception.

8.3.1.6
IpServiceContractInfoQuery.listServiceProfiles(). The text next to the "returns" parameter should be "This contains the service profiles associated with a particular service contract."

9.1.2.1 New SCF Registration 1): All references to "ServicePropertyMode" should be replaced with "ServiceTypePropertyMode".

9.1.2.1 New SCF Registration 1) mentions that the service ID is built up from the USN, the SCF name and the SCF Specialisation which is no longer true.

9.1.2 Reword last sentence as it implies that the framework invokes createServiceManager prior to an application signing a service agreement for the service.

9.1.3.1 Should show the initiateAuthentication() method.

9.1.4.1 The opening paragraph should not talk about registration. It should say something like: "This sequence diagram shows a service instance creating load level notification requests and the framework responding with notifications, based on policy."

9.1.4.5 The note in the STD references a clientAppID, which doesn't exist. The text should read: "The Framework can identify the application that this request is targeted at by checking its records to see which application requested this service instance. It then communicates internally with the Framework interface to the application".

9.1.4.5 1) This also makes a reference to the clientAppID. This should read: "The service instance asks the framework to invoke an activity test on the client application."

9.3.1.1 announceServiceAvailability: should not give the parameters of createServiceManager, which are wrong anyway.

9.3.1.1 IpFwServiceRegistration: There are strange scoping symbols on the definition and description of the IpServiceInstanceLifecycleManagerRef in announceServiceAvailability.

9.3.1.1 The first sentence of the description of the serviceTypeName parameter in registerService() needs to be reworded. It currently states that the parameter includes not only the name, but also a set of named property types to restrict the second parameter. This parameter actually ONLY contains the name, and definately shouldn't contain anything else. The first sentence should be reworded as: The "serviceTypeName" parameter identifies the service type.

10.1 The second occurrence of "supplier" in the first sentence should be deleted.

11.1.3 TpDomainID: For a service instance, the type should be TpServiceInstanceID

11.1.11 TpFwID. The FwID is the general identifier for the framework and doesn't just identify it to a client application or SCF, but also to Enterprise operators, etc. The description should be shortened to: "This data type is equivalent to a TpString and identifies the Framework."

120070-4
 - CALL CONTROL

Problems

6.5.1 Service properties. Not sure if this is a problem or not. Why do properties such as P_TRIGGERING_EVENT_TYPES use INTEGER_SETs as their type? Events are specified in the API as enumerations, but their enum name and not their ACTUAL value should be placed here, so wouldn't STRING_SET make more sense?

6.1.11 Prepaid Sequence Diagram. 16) states that the announcement is only being played to the A-party, but there is no way that this can be the case for GCC, as the application only has the Call reference, not the leg. This means that, for GCC, user interaction applies to all parties on the call!

The application can only pass in a call or a call leg into createUICall(). Passing in a leg may not be sufficient information to identify it as it was created in not only a different service instance, but in an entirely different service. It should be explicitly stated that call and call leg session IDs should be unique within the whole service.

6.1.12 The same problem exists with 6.1.12.

6.3.5 superviseCallRes(), 7.3.4 superviseRes() and 8.3.4 superviseVolumeRes(). These state that the method will be invoked if a tariff change is detected. What would the TpCallSuperviseReport be in this case? There doesn't appear to be an appropriate value. Either TpCallSuperviseReport should be expanded, or the text referencing the tariff change indication should be removed.

7.3.4 createAndRouteCallLegErr(). Why is the leg whose creation/routing has failed passed back to the APL? What can the APL possibly do with the leg at this time? Won't it have destroyed itself? We believe only that the callLegSessionID is needed instead of the whole identifier, and this is so that the APL can correlate this createAndRouteCallLegErr() with the createAndRouteCallLegReq() that triggered it.

7.4.3 In the state description for the IpCallLeg STD it is stated that eventReportReq could be used to request more address digits. It isn’t clear to me how this could be done.

IMPORTANT: 8.1.2 This sequence diagram shows applications placing notifications and media notifications for what appear to be overlapping criteria (calls from A) in INTERRUPT mode. The result of this is that control of the call and its legs appears to be given to TWO different applications, which contradicts everything that has been spoken about before concerning multiple point of control! This is a biggie!

9.3.6 Don't the chairSelection and floorRequest methods of IpAppSubConfCall need to pass the LegSessionID of the leg requesting the chair or the floor to the application? They are supposed to be called on receipt of H.323 conference signalling from someone else in the network who is actually requesting these things, so the application would need to know who is doing the requesting!

Question: In Conference Call Control, shouldn't an application be able to provide a policy as part of the search criteria for checking for resources? What if the resources returned in the search result don't actually support the type of media, e.g. video, that the application needs? It wouldn't know this until it actually tried to reserve the resources!

Question: in the createSubConference() method (9.3.3), can the supplied policy for the sub conference be "greater" than that of the whole conference? e.g. could the subconference contain video when the policy of the whole conference doesn't?

Question: why is the destination address present in the TpJoinEventInfo in conference call control? The party has to have dialled in to a given conference call, whose address is already known to the application, so what is the use of this?

Errors/Corrections

There is no redirection sequence diagram as per Lucent’s contribution in Sophia (N5-010592).

6.1.2 Alarm Call Sequence Diagram. This shows an IpAppUIManager entity, which should be an IpUIManager.

6.1.4 Call Barring 1 Sequence Diagram. The opening paragraph states: "... a prearranged event being received by the framework." This is incorrect/misleading.

6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 7.1.2, 7.1.5, Ditto.

6.1.11 Prepaid Sequence Diagram. 14) states that an announcement is being played but that is not what this method does.

6.3.1 disableCallNotification() states that: "the framework will return the error code ...". This is incorrect/misleading as it is the call control manager which returns this error code.

6.4.1 The STD for IpCallControlManager still references the Service Factory.

6.4.2.6 GCC STD text. Sections of this appear to be repeated. It first gives the 3GPP model, then gives the ETSI version 1 model, with no dividing line between them! Very confusing!

7.1.2 5) references callEventNotify, which should be reportNotification.

7.1.3 8) says that the call leg transitions to the Initiating State, but the diagram shows it transitioning to the Active state.

7.1.3 10) needs to be commented.

7.1.3 20) states that the application can REQUEST a redirection by supplying an original destination address in the route request! This is not the case (see the text for IpAppCallLeg.routeReq()).

7.1.3 20) references party-B but should reference party-C.

7.1.4 41 & 43) What does it mean by an "originating release indication"?

7.1.6 4) states that the message sent is the analysed information event, but it should be the originating call attempt authorised event.

7.3.1 The description of createNotification still references the notification type.

7.3.1 destroyNotification states that: "the framework will return the error code ...". This is incorrect/misleading as it is the call control manager which returns this error code.

7.3.1 All references to assignmentID in this section incorrectly reference generic call control.

7.3.1 changeNotification(). The assignmentId parameter description talks about notifications being "disabled", it should say "changed".

7.3.3 deassignCall doesn't say that the call doesn't need to be deassigned if callEnded has been received

7.4.2 IpMultiPartyCall STD. The text in the note duplicates some of the opening text, but not all.

7.4.2.3 references getInfoReq() and superviseReq() but should be referencing *Res().

7.4.3.1 GENERAL. The meaning of "terminating release" and its propagation to the originating call leg needs to be clarified.

7.4.3.1.2 This talks about collecting more digits, but how is this to be done? Is it by arming the "digits" service code event? If so, then there is no way that the application can specify how many more digits it wants.

7.4.3.1.3 In the section where it lists the functions which are applicable in the state, there is a reference to a "terminating release" causing this leg to move to the releasing state. Why is this here? Presumably this is talking about the case when a network DECIDES to propogate the event back? There is no reason why the terminating release would ALWAYS cause a transition to the Releasing state. Needs clarification.

7.4.3.1.3 In the section where it lists the functions which are applicable in the state, there is a reference to the "Answer" event being detected from the remote party. Why is this here?

7.4.3.1.3 In the section where it lists the functions which are applicable in the state, there is a reference to sending a reportNotification for the ANSWER event. This would ONLY be sent by the terminating call leg, not by the originating leg.

7.4.3.2 GENERAL. The meaning of "originating release" and its propagation to the terminating call leg needs to be clarified.

7.4.3.2.2 states for the redirected event that it cannot be monitored in NOTIFY mode. This is not what Ericsson/Telcordia's CR said and would contradict other, previously agreed, CRs.

7.6.2 TpCallLegInfoReport - The description should read "The type of call leg information."

7.6.2 TpCallNotificationReportScope still contains TpNotificationCallType

8.1.3 6) should say "reportMediaNotification", not "createMediaNotification". Also the diagram in 8.1.3 should be inserted before the more complex ones in 8.1.1!

8.1.4 This needs to be reworked as it shows the application invoking routeReq on the IpMultiMediaCall!

8.3.1 changeMediaNotification(). The assignmentId parameter description talks about notifications being "disabled", it should say "changed".

8.3.1 The description of createMediaNotification still references the notification type.

8.3.1 The text in createNotification that mentions about the NOTIFY monitor mode and also about only one application being able to place an INTERRUPT needs to apply to MultiMedia and Conference call controls, as well.

8.3.1 destroyMediaNotification states that: "the framework will return the error code ...". This is incorrect/misleading as it is the call control manager which returns this error code.

8.3.2 reportMediaNotification(). Shouldn't the text from reportNotification in 7.3.1 that talks about the activity timer be inserted here too? It seems to be just as relevant here as we are giving the APL a reference to the call and its legs.

8.3.2 reportMediaNotification(). The text from reportNotification in 7.3.1 describing that the call parameter will be null for NOTIFY should also be inserted here. The text is already present in the description of the legs parameter.

8.5.2 The elements in TpAppMultiMediaCallBackRefType do not follow the same naming convention as in TpAppMultiPartyCallBackRefType, using hyphens instead of underscores. Although the IDL is correct!

9.1.2 2) the sequence diagram has the word "OLD" prepended to "createConference()"!

9.3.3 and 9.3.5, createAndRouteCallLeg should have "Req" appended to it.

9.3.4 and 9.3.6 There are some strange "scoping" symbols, i.e. "mpccs::", in the definition and description of partyJoined(), chairSelection() and floorRequest().

9.5.2 TpJoinEventInfo - The originalDestinationAddress and RedirectingAddress fields are already contained in the TpCallAppInfo, so these fields should be removed from here.

10 TpCallTeleService - the last 8 elements all use duplicate values! Why do we even specify these values in our enumerations?

120070-5
- USER INTERACTION

8.1 createUI, createUICall and createNotification should all be able to raise the P_INVALID_INTERFACE_TYPE exception.

The table of Contents needs to be regenerated as it includes Annexes C, D and <zz>!

5.2 Call Barring 1 Sequence Diagram. The opening paragraph states: "... a prearranged event being received by the framework." This is incorrect/misleading.

5.3 Prepaid Sequence Diagram. 14) states that an announcement is being played but that is not what this method does.

8.1 The method description for destroyNotification references createNotification is a potentially confusing manner. It should just say: "This method is used by the application to destroy previously created notification requests."

120070-6
- MOBILITY

Any method that accepts an interface as a parameter needs to be able to raise the P_INVALID_INTERFACE_TYPE exception.

Mobility seems to call a lot of its parameters "assignmentID" but uses the TpSessionID type. It should be TpAssignmentID.

9.2.1 The STD contains a reference to "service factory", which should be replaced with "service instance lifecycle manager".

120070-8
- DATA SESSION CONTROL

5.2 Arrow 10 should be going the other way (i.e. from IpDataSession to the application).

8.2 reportNotification(): Should we add that the dataSessionReference parameter WILL be null if the monitor mode is NOTIFY (as with call control)? What about the text about the activity timer from GCC/MPCC? Should this be here too?

8.3 Why can't an IpDataSession be deassigned?

8.3 Should IpDataSession contain a continueProcessing() method?

8.4 createNotification(): Should we add similar text as with GCC, MPCC, etc. with regard to the number of applications that can register in INTERRUPT mode, etc.?

9.1 Why does the opening paragraph state that this is only valid for 3GPP Rel 99?

11.2 TpDataSessionReleaseCause: Could we copy the example values from the GCC section?

120070-9
- GENERIC MESSAGING

Question: in the unlock() method of IpMailBox, it states that "When the application exits, however, all mailboxes locked by the application are unlocked." How does it know when an application exits? Is it when the destroyServiceManager() method is called on the ServiceInstanceLifecycleManager?

120070-11
- ACCOUNT MANAGEMENT

9.1 The STD contains a reference to "service factory", which should be replaced with "service instance lifecycle manager".

120070-12
- CHARGING

The TpChargingSessionID is confusingly named, as it contains a field called chargingSessionID which is of type TpSessionID. TpChargingSessionIdentifier would be a name which is consistent with similar structures in the other APIs, e.g. TpMultiPartyCallIdentifier.

Question. 8.3 extendLifetimeReq(): by how much is the lifetime of the reservation extended? Is this to be agreed off-line? There doesn't seem to be a service property to provide a standard value.
