	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #13, Munich, GERMANY, 11 – 14 September 2001
	N5-010770

Source:
Ericsson

Title:
Mandatory reports on routeReq() for GCC
Agenda Item:

Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:
ETSI ES 201 915-4 v0.0.8 Call Control
Introduction

Currently there are no rules on the invocation of the initial routeReq() for application initiated calls. This can result in the fact that there is an initial routeReq() invoked without requesting ‘answer’ and/or ‘failure’ events. When the initiated request fails there is no defined way to inform the application, according to the current STD. Result is that:

· routeRes() cannot be returned as the event was not armed.

· routeErr() is not applicable for call ‘failure’ events. Furthermore it is also only returned when the application requested to be notified for events.

So we can have a call where the initial routeReq() has failed when no events where armed and the application is not informed.

Another situation is the following:

An initial routeReq() is being handled and the routeReq() for the B party is invoked (state ‘Routing to Destination(s)’). If the events on the initial routeReq() are armed and the routing succeeds, the STD goes to state ‘1 Party in Call’. In this state the STD waits for an event on the B party routeReq(). If there are no events armed the call will stay in state ‘1 Party in Call’, even when the routing of the B party has failed. This situation is not really leading to faults in the call handling, i.e. when the B party is removed the call will always get a callEnded() ending the whole call. But the application has lost track of the STD and status of the B party.

Solution

The problem can be solved by making the request for ‘answer’ and ‘failure’ events mandatory at invocation of the initial routeReq(). When these requests are not provided exception P_MISSING_PARAMETER is thrown.

We recommend the same for the routeReq() on the B party to be able to also track the state of this party in the call.

In all these cases routeErr(), as a return method of a routeReq(), has only any value to the call as the events on routeReq() are armed. So only invoke the routeErr() in that case.

Proposed Changes

STD ‘Application view on the IpCall object’ (chapter 6.4.2.8) as well as the state description of state ‘No Parties’ (chapter 6.4.2.4) need to be adapted stating that the requesting on events on routeReq() is mandatory. Same goes for the method description of routeReq() in IpCall (chapter 6.3.3). Furthermore we noted that the specification could be more specific on the fact that the routeErr() will only be involved when events where requested, i.e. not interested in positive results, no errors (chapter 6.3.4).

6.3.3 Interface Class IpCall
Inherits from: IpService
The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void

Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.
In case of application initiated calls, for the initial routeReq() to the first party it is mandatory to request for ‘answer’ and ‘failure’ events at invocation, because those are needed to keep track of the state of the call. If this requirement is not met exception P_MISSING_PARAMETER is thrown. For a subsequent routeReq() to a second party it is recommended to request for ‘answer’ and ‘failure’ events to enable the application to keep track of the state of the call.
The extra address information such as originating Address is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g., when both answer and disconnect is monitored the result can be received two times.
If the application wants to control the call (in whatever sense) it shall enable event reports
targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
6.3.4 Interface Class IpAppCall
Inherits from: IpInterface
The generic call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
	<<Interface>>

IpAppCall

	

	routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method

routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.
Method

routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).
A routeErr(), as a return method on routeReq(), is only invoked when ‘failure ’events are armed at invocation of routeReq().

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.
6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().
The invocation for the initial routeReq() is done in this state. For this routeReq() it is mandatory to arm ‘answer’ and ‘failure’ events .
6.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.
The state transition diagram shows the application view on the Call object.

[image: image1.wmf]Network Released

Finished

Application

Released

In state

Finshed and No Parties, a timer

mechanism should prevent the object from

occupying resources. Upon the expiry of

this timer,

callEnded() should be invoked

with a release cause of 102 (Recovery on

timer expiry). In the case when no

IpAppCall is available on which to invoke

callEnded(),

callAborted() shall be invoked

on the

IpAppCallControlManager as this is

an abnormal termination.

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"

connection to called party unsuccessful"[

monitor mode = interrupt] ^

routeRes

"

disconnect from called party"[monitor mode = interrupt]

^

routeRes,

getCallInfoRes,

superviseCallRes

routeReq[only 1 outstanding

routeReq

,

arming of ‘answer’

and/or ‘failure’ event(s)

 re

com

m

ended

]

routeReq

[arming

 of

‘answer

’

 and/or

 ‘failure’ eve

nt

(

s

)

 mandatory]

getMoreDialledDigitsReq[no

routeReq outstanding]

"

routing aborted or invalid address" ^

routeErr

"

answer"

"Digits collected" ^

getMoreDialledDigitsRes

"Error in collecting digits" ^

getMoreDialledDigitsErr

"

party released"

"

party released"[no more outstanding

requests]

"

answer from called party"

"

requests failed"[no more outstanding

routeReq operations] ^

routeErr

"

connection to called party unsuccessful"[no more

outstanding

routeReq operations] ^

routeRes

setAdviceOfCharge

setCallChargePlan

getCallInfoReq

superviseCallReq

createCall

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify

(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall

release

timeout ^

callFaultDetected("timeout on release")

deassignCall

release

"

fault in retrieval of information"

^

getCallInfoErr,

superviseCallErr

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"

requested information ready"

^

getCallInfoRes,

superviseCallRes

"

fault in retrieval of information" ^

getCallInfoErr,

superviseCallErr

"

requested information ready"

^

getCallInfoRes,

superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

release

"

call ends: calling party abandoned" ^

callEnded

"

call ends : calling party disconnects" ^

callEnded

"

fault detected"[fault cannot be communicated with network event] ^

callFaultDetected

"

call ends: calling party disconnects"[no monitor for this event] ^

callEnded

"

call ends : called party disconnects"[monitor for this event] ^

callEnded,

routeRes(party disconnect)

deassignCall

Figure : Application view on the IpCall object

� Contact information: Corné Fonken, Ericsson Eurolab Netherlands, tel: +31 161 242639, e-mail: Corne.Fonken@eln.ericsson.se

_1059463041.doc

Network Released

Finished

Application

Released

In state Finshed and No Parties, a timer

mechanism should prevent the object from

occupying resources. Upon the expiry of

this timer, callEnded() should be invoked

with a release cause of 102 (Recovery on

timer expiry). In the case when no

IpAppCall is available on which to invoke

callEnded(), callAborted() shall be invoked

on the IpAppCallControlManager as this is

an abnormal termination.

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

routeReq[only 1 outstanding routeReq, arming of ‘answer’ and/or ‘failure’ event(s) recommended]

routeReq [arming of ‘answer’ and/or ‘failure’ event(s) mandatory]

getMoreDialledDigitsReq[no routeReq outstanding]

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

"party released"[no more outstanding

requests]

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

setAdviceOfCharge

setCallChargePlan

getCallInfoReq

superviseCallReq

createCall

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall

release

timeout ^callFaultDetected("timeout on release")

deassignCall

release

"fault in retrieval of information"

^getCallInfoErr, superviseCallErr

[no reports requested with getCallInfoReq AND superviseCallReq]

"requested information ready"

^getCallInfoRes, superviseCallRes

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

release

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

deassignCall

