TDoc N5-010843

Parlay API –Phase 4 Requirements

Status
:
Draft

Issue
:
v0.01

Date
:
23 August 2001

Editor
:
BT Exact Technologies

CONTENTS

3Chapter 1 Introduction

1.1 Purpose
3
1.2 Scope and Focus
3
1.3 Framework Interface and Service Interface
3
1.4 Revision Control
3
1.5 References
3
1.6 Acronyms
3
Chapter 2 Phase 4 Parlay API Domains
5
Chapter 3 Proposed General enhancements to existing Interfaces
6
3.1 Proposals about style
6
Proposals
6
3.1.1
Emergency preparedness
7
3.1.2
CPL
7
3.1.3
XML
7
3.2 Framework
7
3.2.1
Requirements:
7
3.2.2
Framework has information that is applicable to the Service
8
3.2.3
Enhancements on event notification handling
8
3.2.4
Framework Operator Administration Interfaces
8
3.3 Call control
9
3.3.1
Advanced Call Control beyond MPCC and JCC
9
3.3.2
JCAT background
9
3.3.3
Multi media channel control (OSA R5 Req)
9
3.3.4
Packet Switching Call Control Functions
10
3.3.5
Enhancements to Existing call control interfaces
10
3.4 Event notification (See Annex 1)
10
Chapter 4 Content Based Charging
11
4.1 Service Properties
11
4.2 User Confirmation
11
4.2.1
User Confirmation Mechanisms
11
4.2.2
User Confirmation Support in Content Based Charging API
12
4.2.3
Interface between Payment Engine and Authorization Engine
12
4.3 New Issues for Release 4.0
13
4.3.1
Distributed Content
13
4.3.2
Support of Roaming/Multi-Network Scenarios
13
4.3.3
Separation of Rating and Non-Rating Functionality
13
Chapter 5 New interfaces and areas of involvement
14
5.1 Functions for retrieval of Network Capabilities (OSA Rel5 Req)
14
5.2 Information Services functions (OSA Rel5 Req)
14
5.3 Presence Service Functions (OSA Rel5 Req)
14
5.4 User Data management Requirements (OSA Rel5 Req)
15
5.5 Security Requirements on User Profile Access management (OSA Rel5 Req)
17
5.6 Journalling requirements (OSA R5 Req)
18
5.7 Policy Management (OSA R5 Req)
18
5.8 Service Creation environment (SCE)
18
5.9 User Profile Service interface
19
5.10 E-Commerce
19
5.11 Parlay Lite a new API
20
5.11.1
Why Parlay Lite
20
5.11.2
Conclusions
23

Chapter 1 Introduction

1.1 Purpose

This document is a living document, capturing the agreed requirements for Phase 4.0 of the Parlay API.

1.2 Scope and Focus

This document contains the functional requirements for the fourth phase of the Parlay API. The Parlay API shall be specified and designed using the requirements identified in this document. The requirements are intended to provide the necessary functionality for benchmark applications.

This draft captures the requirements as defined since the last Parlay meeting in San Diego.

It is the intention that the new requirements should build upon the Parlay 3.0 specification and should be fully backward compatible. This means that any network operator implementing Parlay 4.0 should be able to interwork with a client application provider implementing Parlay 3.0. In other words Parlay 4.0 will retain Parlay 3.0 as a complete subset.

1.3 Framework Interface and Service Interface

The Parlay API provides the common interfaces to a variety of services. For the services to work together in a coherent fashion, "framework" functions are required and are also included in this document.

Services and the framework functionality will be exposed via interfaces. These interfaces will be called the service interface and framework interface respectively.

1.4 Revision Control
Revisions of this document will be controlled using a numeric system where the first digit represents major revisions (changes resulting from formal steering committee review) and the second set of two digits represents minor revisions (any other changes).

Number
Date
Editor
Reason for Change

0.00
9 Aug 2001
Richard Stretch
Initial draft for comment, further input.

1.5 References

<<to be provided>>

1.6 Acronyms

Acronym
Description

AAA

ACID

ACL

ADSL
Asymmetric Digital Subscriber Line

API
Application Program Interface

ATM
Asynchronous Transfer Mode

BCD

BCS
Billing and Charging Service

BGP4

CAMEL

CGI

CS-2
IN Capability Set #2

CTI

DiffServ
Differentiated Services

GCCS
Generic Call Control Service Interface

HLR
Home Location Register

IC

ID
Identifier

IE
Information Element

IKE

IMEI

IMSI

INAP
Intelligent Network Application Protocol

IP
Internet Protocol

IPsec

ISDN

ISP
Internet Service Provider

ISUP
ISDN User Part of SS7

L2TP

LDAP

LSA

MExe

MPLS

MS
Mobile Subscriber

MSC

MSG
Messaging Service Interface

NA
Not Applicable/Available

NAT

NCP
Network Control Point

NSP
Network Service Provider

OA&M
Operations, Administration and Maintenance

PLMN

PSTN
Public Switched Telephone Network

RAI

RSVP

QoS
Quality of Service

SET

SLA

SLG

SP
Service Provider

SMS

SRF
Specialized Resource Function

SS7
Signaling System 7

SVC
Switched Virtual Circuit

VLR
Visitor Location Register

VoIP
Voice over IP

VPN
Virtual Private Network

WAP

WIN

Chapter 2 Phase 4 Parlay API Domains

The Parlay API is an open, technology-independent, and extensible interface into networking technologies. The Parlay API is therefore applicable to a number of business and application domains, not just telecommunications network operators.

Examples of business domains that may use the Parlay API include:

· Third Party Telephony Service Providers

· Interactive Multimedia Service Providers

· Corporate Businesses

· Small Businesses

· Residential Customers

· Network Operators

All of these businesses have networking requirements, ranging from simple telephony and call routing to call centre's, virtual private networks and fully interactive multimedia.

The rest of this document is structured to capture all of the requirements that are deemed necessary to enhance the existing Parlay 3.0 specification to a Release 4.0 status.

Chapter 3 Proposed General enhancements to existing Interfaces

3.1 Proposals about style

· It is said that good style leads to clarity and (in software) reliability, this can be shown in Elements of Style by Strunk & White; Elements of Programming Style by Kernighan & Plauger. Clarity in any documentation leads to ease of use. This does not mean that it is necessarily easy to use, but that the overall concepts are clear and without ambiguity.
· One problem that we have with Parlay is that we need to be able to explain it to a number of differing audiences. High level explanations can be explored here, but to fully understand the API it is necessary to dig deep into the specifications. Unfortunately as they are presented so far, it makes it very hard to explain the API to colleagues within the industry, this effectively makes our job of selling the API very difficult.
Proposals

· More complete and rigorous method and data structure definitions

· Full explanation of all arguments and fields

· Why as well as what would be helpful

Method pre-conditions and post conditions expressed in OCL or comparable formal notation
· Ladder diagrams would be useful but not these on there own are not enough

· One needs to provide fully worked out state-charts (not the same as FSMs)

· Sample code to supplement ladder diagrams

· Sample code has been a great help in figuring out Sun’s Java APIs and this would be equally helpful with Parlay
· Eliminate lack of consistency in naming conventions

· For example, are the names of fields in a sequence capitalized or not? Usually, but not always this is a seemingly minor issue BUT it leads people to question the maturity of Parlay and the care with which it has been developed. We could follow Java’s practice of deprecation to manage name changes.

· Editors Note.

· This subject of Deprecation is rather important here. We have been considering what we do if we find that certain interfaces in release 3.0 are not stable enough and need further changes made. If we use the concept of deprecation then we can effectively provide new methods to that interface where the old methods are incorrect. This means that the two methods exist in the same interface for the same purpose in Release 4.0. One may not be complete but the other is! The methods that are incorrect would be removed in further versions of the API.

· Finding things in the specs is very difficult, especially in the Data Definition specs. There seems to be some attempt to organize things by topic, but for reference purposes, alphabetic order would be more helpful (or at least an alphabetical index). Another point is that Web-based version as utilized in the JAIN web documentation would be a good model to emulate

3.1.1 Emergency preparedness

· There is a need to extend A/IN-based facilities defined for National Emergency calls to Next Generation Networks and APIs. The U.S. Government and other countries have sponsored programs over the past 15 years to ensure, via standards and implementation programs, that National Emergency calls enjoy priority handling, Network Management Control exception and Alternate Carrier Routing, etc. to facilitate this a Calling_Party_Category parameter for should be provided within the call control interface.

There is also a need to handle new types of communication (data, email, video, multimedia), new types of networks (wireless, packet) and technology (protocols, architectures). These requirements impact Call Control and Policy Management and may also impact Mobility, Charging and Framework (e.g. for location-based service, accounting bypass, security, etc.)
3.1.2 CPL

Call Processing Language (CPL) is a language that can be used to describe and control telephony services. Although it has been often associated with Internet telephony such as SIP, in practice, it could be used on many networks. The draft CPL specification can be found at http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-04.txt . Although the content of CPL scripts is defined by the draft, if an application wishes to load a CPL script, there are still issues about how it can be used in a secure environment, e.g. how does an application authenticate itself before uploading a CPL script, how can a CPL script be checked prior to deployment, etc. It is possible that Parlay could offer an environment in which CPL scripts could be deployed in a secure manner.

3.1.3 XML

Release 3.0 of the Parlay APIs have not effectively embraced the IT and developer communities from a membership and technical content perspective. A UML to XML mapping rules for Parlay 3.0 would revive interest from the IT industries.
Having an XML interface specification would greatly dispel those who say that Parlay is not IT or Internet friendly because it doesn't have an XML interface specification. We need to consider whether this 'mapping' document is provided as part of Parlay 3.1 or created in parallel in Parlay 4.0.

The goal here is to address the IT and developer communities and get them actively participating in the Parlay Group, to work with those industries to make Parlay easier to use, to make Parlay visible, and to dispel myths created by competitive marketing.

3.2 Framework

3.2.1 Requirements:

· Clear definitions are needed to explain the relationship between service type, service properties, service contracts;
· Clear definition of the relationship between service registration, service discovery, service subscription, etc.;

· Clear definition of subscription parameters (data and policies);
· Introduction of service usage data and related APIs (to support accounting, usage documentation, etc.)

Proposed Enhancement:

· Definition of an information model (and the related APIs) for the support of Parlay/OSA framework functions (e.g., subscription, service discovery, service registration, accounting, etc.) and for the management of the Framework functions.
Editors Note: Eurescom project P1110 is in the process of producing an information model for the Framework. We should consider this first.
Generally we need to consider the possibilities of unofficial liaisons between ourselves and Eurescom

3.2.2 Framework has information that is applicable to the Service

During the registration/authentication process information is provided to the framework that may be applicable to certain usage of SCFs. An example may be the following:

A client register with the framework and it is agreed that the applications concerned should never be able to route calls to premium rate numbers. How is this information conveyed from the framework to the service part of the Gateway? There needs to be some new mechanism put into place that allows this capability, probably on the FW to Service interface (classically interface 3 in the Parlay architecture.)

3.2.3 Enhancements on event notification handling

Requirements:

· Define rules on how to deal with multiple applications registered on the same event criteria:

· they could introduce some ordering;

· they could allow the forwarding to all the registered applications

· they could apply some load balancing criteria at application side;
· Define rules on how to deal with events that are matching multiple event criteria e.g a service registered on a criterion on CLI and another on a criterion on dialled number.
Proposed Enhancement:

· Definition of general mechanism, based on policies/rules, to allow a better control of event-based application activation/trigger, and event notification;
Editors note: ~(1) One simple rule could be to ensure that the application deals with originating events before terminating events. This maybe where the terminating end is under the control of another application.

3.2.4 Framework Operator Administration Interfaces

Service Type Management

The interfaces that enable management (creation/deletion etc) of Service Types should be added. Lucent has already proposed a draft API for this.

Framework/Service Interface expansion

Parlay 3.0 saw the replacement of the Service Factory with the Service Instance Lifecycle Manager. This currently has create and destroy methods. This interface could be extended to provide suspend/resume methods, for example.

Service Properties

There are a number of ways that Service Properties are currently used (Parlay 3.0) but once a Service is registered the properties cannot be changed. There are scenarios where changing them may be desirable.

Criteria matching while doing service discovery is primitive in Parlay 3.0. It should be possible for a Client to define how the requested properties should be matched to the registered properties.

Contract/SLA Format

There is no definition for the structure of contracts/SLAs. A “default” one may be desirable as it could allow more automated discovery and signing of agreements.

Simplified Interfaces

Experience with working with the Framework interfaces and directives from the Parlay Board suggest that simplified Framework APIs are desirable (the Board have also raised the possibility of Parlay X, as it has been called).

3.3 Call control

3.3.1 Advanced Call Control beyond MPCC and JCC

· There is a need to define a richer call control model that allows definition of advanced value-added A/IN type services. Essentially we need to include the functionality that is similar to CS-2 type Basic Call State Model (BCSM) and terminal side modeling

· Does NOT include conferencing, multimedia, UI, messaging, mobility, charging

· MPCCS (and JCC) should remain a stable, core call control model from which other packages should inherit and develop

· JAIN has started an effort in this direction in the Java Coordination and Transactions (JCAT) Expert Group that inherits from JCC

· See Java Specification Request (JSR) 122 at http://Java.sun.com/jcp

· Spec Lead: Telcordia. All JAIN company experts are invited to join

· Kickoff at Somerset, NJ, May 01. Target spec date Jan 02

3.3.2 JCAT background

JCC is a simplified version of Parlay’s MPCCS. JCC aligns with JTAPI and Parlay MPCCS. JCC is based on AIN/IN experience, but protocol agnostic. JCC is out there and available!

JCAT perceives JCC as its core package and extends it with concepts to model and control terminal capabilities. Furthermore, JCC's state transitions models are enriched and more control is provided over its processing.

3.3.3 Multi media channel control (OSA R5 Req)
These capabilities allow an application to control individual channels in an IP Multimedia call. An application shall be enabled to:

· Be notified on Media channel events
OSA shall enable an application to be notified when a certain type of media channel is opened or closed. This may be dependent on additional criteria (tbd.)

· Monitor Media channels
OSA shall enable an application to request information on all the media channels currently available on a call. In addition the application must be able to monitor on the opening and closing of channels for media for a specified call.
· Open/Close/Modify Media channels
OSA shall enable an application to open, close and modify the parameters of a media channel on a certain call.
· Reserve/Free conference resources
OSA shall enable an application to reserve resources in the network or free earlier reserved resources for a conference in advance.

· Create Multi-media Conference
OSA shall enable an application to create an Multi-media Conference Call. This can either be an add-hoc conference creation or it can refer to resources that were reserved in advance
· Party join/leave control
OSA shall enable an application to be informed when a new call party wants to join/leave the conference. It shall be possible to attach the call leg to the conference or reject the join
Editors Note: Some of this information may already be covered in Release 3.0, however points 3 & 6 above should be catered for when we consider the mapping of Parlay and SIP.

3.3.4 Packet Switching Call Control Functions

This section is presently residing in Annex 2. It has been placed there until it is decided that this functionality has not already been covered in Parlay 3.0. If it is subsequently found that this material is applicable to Parlay Release 4.0 then it will be brought into the main body of the document

3.3.5 Enhancements to Existing call control interfaces

A question that needs to be considered here is should we leave the existing Call Control interfaces as is and ensure that any new call control capabilities are placed in new object classes? These new classes should then be subclasses of, for example, MPCC.

3.4 Event notification (See Annex 1)

Release 5 of OSA requires a number of event notification criteria to be set. These requirements can be found in Annex 1. These need to be checked to ensure that they are already covered by Release 4. If not these need to be placed in the main body of this document.

Chapter 4 Content Based Charging

Issues left from Release 3.0

[image: image1.wmf]www.parlay.org

©

 2000 The Parlay Group, Inc. All Rights Reserved.

Reference Architecture

User

Agent

User

Agent

Request

Engine

Request

Engine

Rating

Engine

Rating

Engine

Payment

Engine

Payment

Engine

Settlement

Settlement

ASP MIS

ASP MIS

1

5

6

2

4

3

Interfaces:

(1)

Payload Channel

(2)

Payment Processing

(3)

Clearing/Recharging

(4)

User Dialogue

(5)

Rating

(6)

Statistics/Logging

(7)

Authorization

Interfaces:

(1)

Payload Channel

(2)

Payment Processing

(3)

Clearing/Recharging

(4)

User Dialogue

(5)

Rating

(6)

Statistics/Logging

(7)

Authorization

Authorization

Engine

Authorization

Engine

7

Figure 1
4.1 Service Properties

In Parlay 3.0, there is the concept of Service Properties that provides a standardized format to exchange service configuration data. Service Properties are exchanged in XML format. There are XML elements specific to each Parlay API; these XML elements are defined by an XML-DTD. Currently, there is a Service Property specification for the call control API. They are kept in a single DTD.

Service Properties should be defined for the Content Based Charging API.

The particular Service Properties and their exact semantics need to be discussed by the workgroup. The following attributes are given as examples to give an idea what should be configurable by Service Properties:

· Lifetime of a charging session

· Maximum reservation/maximum charge amount allowed

4.2 User Confirmation

It is well understood that in general an implementation of a Payment Engine needs to have a means to request explicit user confirmation from a subscriber before debiting his account. However, with respect to the time and resources available for completing the Content Based Charging API specification for Parlay 3.0, user confirmation has not been investigated so far.

For Parlay 4.0, user confirmation shall be considered in detail. The issues identified so far are discussed below.

4.2.1 User Confirmation Mechanisms

To better understand the requirements on the Content Based Charging API that are introduced by the need to obtain a user confirmation, appropriate mechanisms that are deployed today will be investigated.

The workgroup should investigate different confirmation mechanisms. A representative selection of confirmation mechanisms shall be fixed, similar to the benchmark scenarios that comprise the base of the Parlay 3.0 specification of the Content Based Charging API. Eventually, the existing Content Based Charging API should be enhanced in a backwards-compatible manner.

The representative set could consist of, for instance

· SMS based confirmation

· confirmation based on Web/WAP redirect, and

· implicit confirmation based on a user-configured sensitivity level.

4.2.2 User Confirmation Support in Content Based Charging API

The confirmation mechanism that suits a given service and user will depend on different factors, one of them being the communication protocol and media utilised between the Request Engine and the User Agent.

It shall be investigated if the existing Content Based Charging API provides sufficient information to the Payment Engine to select and perform an appropriate confirmation mechanisms. If not, appropriate extensions will be introduced for Parlay 4.0.

For instance, if the Consumer buys physical goods in a shop, a confirmation based on a voice call may be appropriate. If the Consumer is accessing a Web service, a confirmation based on Web redirect will be more convenient for this Consumer. Although the Content Based Charging API should be independent on the confirmation mechanisms available, it still could be useful if the Request Engine has a means to provide information about the communication protocol and media utilized between the Request Engine and the User Agent. The information could be relayed by the Payment Engine towards the Authorization Engine.

The mechanism to be used here could be the Service Parameter argument of all methods. Expected changes will consist of

· defining new Service Parameter IDs’.

4.2.3 Interface between Payment Engine and Authorization Engine

The Reference Model for Content Based Charging (in Parlay 3.0) makes a distinction between the Payment Engine and the Authorization Engine. The Authorization Engine provides the Payment Engine with a means to request explicit confirmation from a subscriber before debiting his account. The use of an external Authorization Engine will allow to support different confirmation mechanisms with a single Payment Engine, or to add new confirmation mechanisms later on without changing the Payment Engine.

It shall be discussed if the interface between the Payment Engine and the Authorization Engine needs to be standardized.

When discussion this issue, it has to be taken into account that both the Payment Engine and the Authorization Engine need to be deployed by the same operator anyway, since they need to trust each other. So, the interface interface between the two is probably not a network API and not covered by the scope of Parlay.

Nevertheless, it may be useful to investigate the operations such an interface should support. These considerations may help to specify possible enhancements to the existing Content Based Charging API in a way that it supports a wide range of confirmation mechanisms, but does not depend on individual ones.

The functionality of the interface between the Authorization Engine and the Payment Engine should be investigated for Parlay 4.0

The interface between the Authorization Engine and the Payment Engine shall not depend on the confirmation mechanism that is used by the Authorization Engine; everything specific to a particular confirmation mechanism shall be encapsulated within the Authorization Engine.

The interface shall be flexible enough to allow different confirmation scenarios. However, it shall provide the Authorization Engine with information that cannot be gathered by the Authorization Engine itself. The information to be provided via the interface could be:

· The service that is about to be paid, and the price that will be debited from the subscriber’s account. This information can be presented to the user when requesting confirmation.

· Any information that describes the capabilities of the user equipment used by the subscriber (e.g. Web browser, mobile phone, etc.). This information can be used by the Authorization Engine to select an appropriate confirmation mechanism.

· Eventually, any preferences for a confirmation mechanism to be utilized. Preferences could come from the Consumer, the service, or eventually from a profile kept by the Payment Engine.

4.3 New Issues for Release 4.0

4.3.1 Distributed Content

In a late phase of specifying the Content Based Charging API for Parlay 3.0, the question was raised if „distributed content“ would be supported by the specifications. The idea behind „distributed content“ is the use of caching mechanisms that store the content geographically close to the Consumer. Thus, the same content may reside on multiple servers.

The workgroup should investigate how distributed content can be supported and eventually introduce changes that are necessary to support distributed content.

This task could possibly include the following activities:

· Introduction of a new benchmark scenario that is based on distributed content.

· Check the technical impact on the specification.

· Change the specification if necessary

4.3.2 Support of Roaming/Multi-Network Scenarios

In Parlay 3.0, no effort has been spent in supporting Content Based Charging across multiple networks. However, in general it is desirable that subscribers who have subscribed as Consumers to one Payment Service Provider can also access services offered in other networks and pay for them through the Content Based Charging Mechanism.

Although the Parlay API’s shall not impose any specific network architecture, the Content Based Charging workgroup shall make sure that the methods on the API map to functionality that is in fact available in the network.

The workgroup should ensure that Content Based Charging works in Roaming and Multi-Network scenarios.

This task could possibly comprise the following activities:

· Sketch how a roaming and multi-network scenario could look like. Add this to the benchmark scenarios.

· Check the technical impact on the specification.

· Change the specification if necessary, according to the requirements derived from the benchmark scenario.

4.3.3 Separation of Rating and Non-Rating Functionality

When designing the class model for the Content Based Charging API, care has been taken to support a distribution of the Charging Session contexts over multiple servers. This resulted in a separation between a Charging Manager interface (which is typically instantiated once per service), and a Charging Session interface (being instantiated once per service instance).

On the other hand, there are different classes of payment operations: Some take a currency amount as input parameter (the rating of the service is done by the service implementation), while some take only events (or units) as input parameters (the rating is then done by the implementation of the Payment Engine). The possibility to mix both types of operations is limited: Once a reservation for a currency amount has been made, no reservation for units is allowed (see the STD in the Parlay 3.0 specification).

However, vendors may wish to host Charging Sessions that do use rating on different systems than the ones that do not use rating. This is currently not possible since upon creation of the Charging Session it is unknown if it will use rating or not.

The workgroup should discuss if the client should make the intended use of the rating functionality explicit, and if so, provide appropriate means in the specification.

The desired behavior could be achieved by adding specific creation methods to the Charging Manager interface.

Chapter 5 New interfaces and areas of involvement

5.1 Functions for retrieval of Network Capabilities (OSA Rel5 Req)

The functions for retrieval of Network Capabilities shall enable the application to discover the network capabilities of the serving network of a subscriber.

Information provided to the application shall contain the following information, if available:

· Available network toolkits, including level of support (e.g. CAMEL Phase X, OSA version Y),

· Available Service Capability Servers (e.g. SMSC, CSE),

Supported Network access, (e.g. GPRS, CS, IMS),

Editors Note: This part may be better placed within section 3.2.2. (Maybe a better way of doing this is for the information on the type of network supported be carried in the initial information sent to the Application and should not therefore be requested from the app to the gateway.)

5.2 Information Services functions (OSA Rel5 Req)

The information services functions enable applications to supply and retrieve information that is available for distribution from the Home Environment, HE-VASPs and/or visited networks, as determined by the Home Environment.

Examples of such information could include traffic information, weather, headlines, local services etc., or indeed any type of generic information that is considered useful to make available to OSA applications.

The following functions shall be provided:-

-
supply and update of Information:

-
the application shall be able to supply and update details to the information service in order to make it available to other applications

-
retrieval of Information:

-
the application shall be able to retrieve details from the information service

-
notification of Information change:

-
the application shall be able to receive notifications from the information service when the details are updated:

-
addition of new information;

-
removal of existing information;

-
upgrade of existing information;

The application shall be able to enable, disable and modify receipt of information service notifications.

Editors note: All of this is outside of Parlay/OSA. It should be up to the applications concerned to provide this information itself and not to request it via the API.

5.3 Presence Service Functions (OSA Rel5 Req)

OSA shall enable the management of presence entities (i.e. presentity) in the presence service. The following management functions shall be supported:

-
presentity creation:

-
the application shall be able to request the creation of a presentity. The application shall be able to supply all attributes of the presentity as well as any access rules pertaining to the presentity to be created.

-
presentity modification:

-
the application shall be able to request the modification of a presentity. The application shall be able to modify any attributes of the presentity as well as any access rules pertaining to the presentity to be modified.

-
presentity watch:

-
the application shall be able to request presence information about a presentity. This request may be for the current information, on a periodic basis or for future changes in the presentity’s presence information (e.g. arming of event notifications). An application may only request presence information of a presentity for which it is allowed to do so.

-
presentity deletion:

-
the application shall be able to request the deletion of a presentity.

Editors Note: This information should be provided by the PAM work. Should OSA adopt the whole of the PAM interface?

5.4 User Data management Requirements (OSA Rel5 Req)

The User Profile logically is a set of information relevant for a given user. The set of information is provided by Service Capability Servers and – if permitted – from Value Added Services. The amount of User Profile information might be distributed over various physically separated entities. The concept of distributed information is not within the scope of this specification. The detailed content of the User Profile depends on the Service Capability Servers and is not subject herein.

However, subscribers are able to subscribe or use services provided from Value added service Providers. Subscriber may customise these VAS according to their needs equally as the subscriber customise her GSM/UMTS services provided by the network operator. To avoid malicious or conflicting situations it is needed to allow VAS to access the users USER Profile. The co-existence of several services and the correct inter-working between them are founded on sufficient information about other services subscribed to.

VAS shall not be allowed to access the User Profile without permission. It is important to prevent the User Profile from malicious attacks.

Therefore a User Profile Access Manager (UPAM) shall enable a VAS to access the User Profile. The User Profile Access Manager herein is defined as a network function. The realisation of the UPAM functions is out of the scope of this specification but will be detailed in the relevant stage 2 specification(s). The scope of the UPAM is to protect the User Profile, to authorise a VAS, to grant access and to observe actions performed by the VAS.

Depending on the authorisation, an UPAM may permit the VAS to read from and/or to add to and/or to modify the User Profile or parts of it.

The figure below gives an logical overview of the relation between VAS, UPAM and the User Profile itself.

[image: image2.wmf]Service C

Service Profile

Broker for

Service A, B, C

VAS Personal

Settings 2

VAS Personal

Settings 1

User

Profile

Access

Manager

U

S

E

R

P

R

O

F

I

L

E

Value added

Services

Service B

Service A

Set of

information

provided by

GSM/UMTS

Service

Capability

Servers

Set of

information

provided by

GSM/UMTS

Service

Capability

Servers

Set of information

provided by

GSM/UMTS

Service Capability

Servers

Network Operator Domain

Value Added Service Provider Domain

Note: the dotted line refers to additional Personal Settings. The reference itself shall unambiguously identify the location of the additional personal settings.

User specific information from the e.g. HLR and/or HSS are equally part of the User Profile as terminal settings and VAS specific preferences. The User Profile in principle is the summary and collection of information with a relevance for the services supported for a given subscriber.

The figure above shows User and Network Service and VAS specific information, customised by the user. It is assumed that the user profile consists of several parts. The User Profile elements shall at least be capable to store a reference to additional information stored else where. The User Profile shall act as a root towards all user specific information.

Even when the content of the User Profile is outside this specification, the following figure shows how a content could look like.

[image: image3.wmf]•

Telecom Subscribers Identity

•

Subscribed Telecom Services

•

Multiple Subscriber Profiles

•

Authentication Information

•

CAMEL Service

Ref

 & Trigger

•

Location Information

•

Policy Information

•

Age of Location Information

•

Terminal Capability

•

Link to Settings & References

•

Reference to WAP Gateway

•

Reference to other Gateways

•

Reference to Service 1 e.g.

 Unified Resource Locator

•

Reference to Service 2 e.g.

 Object Reference

•

Reference to Service Broker,

 e.g. Server Identity

On the left side of the figure above, typical GSM/UMTS information are listed (this is not an exhaustive list).

The right side depict references to VAS specific information. The representation of references to VAS specific information above, is an example and does not insist to be complete.

5.5 Security Requirements on User Profile Access management (OSA Rel5 Req)

An application shall be enabled to access User Profile data as long as permission is granted by the User Profile Access Manager.. The User Profile Access Manager shall be able to:

· verify authorised access to the requested parts of the User Profile for a given application and User

· identify the type of access which is requested,

· elaborate the access rights for the request,

· permit dedicated access,

· verify the granted access and

· deny access requests.

An application has to pass the framework functions prior to initiating the authorisation mechanism of the User Profile Access Manager.

The type of access is one out of:

· Reading user profile information; in case parts of the User profile is subject for reading it shall unambiguously be identified by the application,

· Adding information to the user profile,

· Modify existing information in the user profile.

The control of access rights are in principle on the users discretion. The user shall have the possibility to allow or restrict the retrieval and presentation of her user related data. The mechanism how a user is able to maintain access rights is for further study.

Whenever an application requires access of user related data, the application shall be forced by the User Profile Access Manager and shall be enabled by the OSA SCS to identify the user before it can use the requested service capabilities.

The network shall guarantee the privacy of the user’s profile data. This shall be possible based upon

a) the already defined authentication/authorisation mechanisms of the Framework

b) and additional information, provided by the application via the OSA SCS, that uniquely identifies the user.

5.6 Journalling requirements (OSA R5 Req)
Applications, that use the OSA interface, may perform actions in the network that might cause costs or potentially undesired effects to the user or operator. Therefore it shall be possible to log usage of the OSA interface and thus to make actions performed through the OSA interface traceable to their originating applications.

Journal Information shall at least consist of the following parts:

· Unique identity of the application

· Date and time of invoking execution of an OSA function

· Name of invoked OSA function

· Identity of the served subscriber.

Additional information may be provided by the application (e.g. name of the service or reference to an application in the terminal).

The OSA shall offer sufficient capabilities to:

· Request an application to supply the network with the application’s Journal Information. The network operator may decide on the level of granularity (i.e. with which OSA functions Journal Information shall be provided).

· Reject execution of OSA functions if insufficient or inaccurate Journal Information is provided by the application.

· Supply a (logging-)application with Journal Information collected from various applications.

Collection of Journal information may take place in the network or by a dedicated application using the OSA interface

5.7 Policy Management (OSA R5 Req)
Applications should have the ability to interact with policy-enabled Service Capability Features in a secure manner. The network policies always take precedence over the application-defined policies.

The interface shall provide sufficient capabilities to enable applications to request:

· To manage the application’s policy-related information

This allows applications to create, modify and delete policies, policy events and to activate and deactivate policy rules.

· To manage policy event notification

This allows applications to register for specific policy events. Once registered for such events, the application shall receive notification of the events until it explicitly requests the termination of the notification request

· To collect policy statistics

This allows an application to collect policy related statistics from the network. Examples include success or failure of operations on policies and time stamps of policy events.

5.8 Service Creation environment (SCE)

· There is interest in defining certain aspects of SCE

· Basic building blocks and design patterns

· Basic facilities (simulation, customization etc)

· Interaction and deployment with a Service Logic Execution Environment (or Application Server)

· Two types of SCE

· Component-based SCE e.g. CORBA Beans, JavaBeans

· XML-based SCE e.g. Service Creation Markup Language (SCML) based on JCC

· JAIN has started an effort in this direction in the Java Service Creation Environment (JSCE) Expert Group

· See Java Specification Request (JSR)

· Requirements document draft in discussion. Target spec date Jan 02

· Co-Leads: Telcordia and TBD

· We need to keep other industry groups informed as we proceed
5.9 User Profile Service interface

· Requirements:

· a service interface to "sell" to third parties a reliable storage; it could be used by an application (or an application provider) to store and retrieve data concerning its users/subscribers (e.g., subscription data, customisation data, etc.);

· an API to allow third parties to access user/subscriber data managed by the network operator; these data are horizontal to specific applications, but they are defined in order to support specific business models.
· Proposed Enhancement:

· Definition of a Service Interface to define and access application data;

Instantiation of the Service Interface with data models to support specific business models;

Editors Note: (1) This area should be considered along with section 4.5

(2) Eurescom Project P1110 are also considering this area and reference should be made to their work wherever possible.

5.10 E-Commerce

At present the E-commerce group is in the stage of establishment within the parlay organisation. It has been agreed but as yet has not produced any definite requirements.

The text below has been captured from a slide presentation made at the Parlay meeting in San Diego.

· The payment process should support:

· To initiate a secure payment (session or transaction)

· To authenticate buyer & seller based on, for example, PKI and MeT work (WPKI)

· To charge the buyer

· To commit payment (session or transaction)

· Characteristics of an e-payment solution :

· Any type of buyer device (e.g. Mobile station, PC, DTV,…)

· Any type of seller application (e.g. Appl server, Web Shop, Vending machine, …)

· Third party content

· Distributed pricing

· Any size of value, micro -> macro payments

· Several payment methods

· Contracts i.e. dynamic T&Cs supporting ad-hoc purchases

· Non-repudiation

5.11 Parlay Lite a new API

5.11.1 Why Parlay Lite

Application developers have commented on the complexity of the Parlay API and the difficulties they have in implementing this within their application platforms. The purpose of this section is to explore how one can make the Parlay API more user friendly. It is not necessarily a requirement to remove the existing API. The options open to us will be explored later on in this section. First of all we must address the problems that have been highlighted. The following was based upon release 2.1 of Parlay but is also applicable to Release 3.0:

· The Parlay specifications are large - about 7.8 MB of documentation - and growing!

· New developers will find Parlay a sizeable specification to learn - encouraging new developers will be crucial to Parlay’s adoption

· Many applications do not require the full sophistication of the Parlay specification and so a wider range of application development environments could be provided with a simpler Parlay specification. The following figures highlight how one may reduce the existing interfaces to something more manageable.

[image: image4.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 1

Figure 1 represents the total methods present in a particular interface.

[image: image5.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 2

Figure 2 shows that one alternative would be to reduce the methods per interface.

[image: image6.wmf]Metrics for

Lite

-

ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Figure 3

Or, as shown here in Figure 3, to reduce the number of parameters per method.

Analysis of Parlay 2.1 data types and interfaces reveals:

· A total of 516 data types consisting of

· 153 structures

· 282 type defs

· 81 enumerations

· Some data types are complex - e.g.

· union data types are not universally familiar

· Structures contain many elements - it is cumbersome if these all have to be initialised explicitly

· A total of 92 interfaces

· Average 4 methods per interface
Using these statistics we need to consider how one can produce an equivalent leaner API, without loosing the capabilities it provides. Options open to us are to:

· Create a style guide, which must be adopted for all lite specifications. This ensures:

· a consistency in naming conventions throughout specification

· a specification which can be very widely implemented

· simplify data definitions, interfaces, methods

…BUT…
· Keep a logical mapping onto Parlay Classic, e.g. default values for data members and arguments

· Use Parlay Classic naming, concepts and models as much as possible
So where will Parlay Lite be situated?

· Parlay-Lite at the Application Layer

· Ensures interworking between all Parlay-Lite applications and Parlay Classic gateways

· Allows a mix-and-match approach, e.g. Parlay Lite toolkit could come from different vendor to gateway implementations or we could allow an application to use both Parlay Classic and Parlay-Lite simultaneously
· Parlay-Lite at the Gateway Layer

· Keeps applications truly lightweight

· Parlay-Lite gateways need not support full Parlay
The following is an example of how these reductions could be made.

[image: image7.wmf]An Example

routeReq

(

callSessionID

 : in

 TpSessionID

 ,

responseRequested

 : in

 TpCallReportRequestSet

 ,

targetAddress

 : in

 TpAddress

 ,

originatingAddress

 : in

 TpAddress

 ,

originalDestinationAddress

 : in

 TpAddress

 ,

redirectingAddress

 : in

 TpAddress

 ,

appInfo

 : in

 TpCallAppInfoSet

 ,

callLegSessionID

 : out

 TpSessionIDRef

) :

 TpResult

routeReq

(

callSessionID

 : in TpInt32

,

notifyEvents

 :

TpCallEventType

 (

enum

),

interruptEvents

 :

 PCallEventType

 (

enum

),

noAnswerDuration

: TpInt32,

targetAddress

 : in

 TpString

 ,

originatingAddress

 : in

TpString

,

callLegSessionID

 : out TpInt32Ref) :

 TpResult

CLASSIC

4x-element

structures

2 arrays

of unions

LITE

basic data

types

5.11.2 Conclusions

· All service APIs could have a lite version

· A lite Framework could be developed

Way forward …
· Identify an area of the interface for a lite version and create an example

· Create a style guide

· Apply to other existing interfaces if successful ...

· What about future specifications? This would inevitably require some sort of maintenance and or mapping,
Annex 1

1.0 Event Notification Function (OSA R5 Req)
The Event Notification Function shall allow an application to specify the initial point of contact, which it is interested in. The Event Notification Function provides the necessary mechanisms, which enables an application to request the notification of subscriber or network-related event(s). An application may in addition request the cancellation of subscriber or network related event notification. For all subscriber-related events the application shall always specify the subscriber for which the Event Notification Function is valid. Once an application has enabled the notification of event(s), the Event Notification Function shall report the event(s) until such time the application explicitly requests the termination of the event(s) notification.

When the event occurs, the application that requested the event is informed. The notification of the event shall be accompanied by unambiguous information identifying the original request and event related data. For example, in case of an application is interested in “message” the notification to the application shall indicate whether it is incoming or outgoing, in case of chargeable events, the application shall receive details as used at the network to create a Call Detail Record. In this case, processing in the network is not suspended after notification of the event to the application.

The Event Notification Function includes the availability of offering additional criteria to be specified by the application. The set of criteria is individual and may vary for the event requested. The detailed set of criteria available for each of the events above is described in [6].
1.1 Subscriber Related events:

· A user becomes available:

-When a subscriber registers to a network and this event is armed by an application, that application shall be notified. Registration in this sense is further detailed in chapter 12.3.1. Attach and detach applies for CS and PS.

· An initial call-processing event occurs.

When a call to or from a given user is created and this event is armed by an application, that application shall be notified.

· A message is sent or received.

When a message to or from a given user is sent or received and this event is armed by an application, that application shall be notified.

· A chargeable event happens.

When a chargeable event occurs for a given user and this event is armed by an application, that application shall be notified.

· The users status is changed.

When a given user changes her status (e.g. from idle to busy) and this event is armed by an application, that application shall be notified.

· The users location is changed.

When a given user changes her location (e.g. leaving a certain area, which is "identifiable", by the network) and this event is armed by an application, that application shall be notified.

· The Terminal Capabilities are changed.

When the capabilities of a terminal change (e.g. when a keyboard is attached) and this event is armed by an application, that application shall be notified.

Note:
The ability to support this function is dependent on the ability of a terminal (through e.g. MExE or WAP) to notify changes in its capabilities. Therefore this function will not be able to supply event notifications for terminals not supporting notification of their terminal capabilities.

1.2 Network Related Events:

· A network fault management condition is met,

When a fault management condition occurs at the underlying network (e.g. congestion of network components) and this event is armed by an application, that application shall be notified.

· A network service or network service capability de-registers,

When a network service capability feature de-registers with the Framework all applications which are currently authorised to use this service capability feature shall be notified.

Annex 2

1.0 Packet Switching Call control functions (OSA R5 Req)
This subclause details with packet switched call control functions. The purpose of this function is to allow applications to control and monitor GPRS sessions. A GPRS Session may consists of one or more GPRS PDP context.
Applications should have the ability to :

· Release a PDP context:

This provides the ability for the application to force a PDP context to be released. The application may provide an indication of the reason for release of the PDP context.

· Control a PDP context:

This provides the ability for an application to modify the information pertaining to the PDP context at the time of establishment. The application may also allow the PDP context to continue with or without the modified information pertaining to the PDP context. The application shall have the ability to request events to be observed by the network and reported back to the application.

· Monitor a PDP context:

This provides the ability for an application to monitor for PDP context duration and tariff switching moments.. An application may specify a threshold for the duration of a PDP context or a part thereof. The application shall have the ability to grant new thresholds when the expiry of a previously set threshold has been reported to the application.

· Monitor a GPRS session:

This provides the ability for an application to monitor for GPRS session data volume. An application may specify a threshold for the amount of data allowed to be transferred within a GPRS session. The application shall have the ability to grant new thresholds when the expiry of a previously set threshold has been reported to the application.

1.1 IM Call control Functions

· Create Multimedia calls

This provides the ability for an application to initiate a multimedia call towards (or on behalf of) a subscriber. Potential use - push services, click-to-multimedia call (use the 3rd party Call control SIP drafts on the network side) etc.

· Release Multimedia calls

This provides the ability for an application to force the release of a multimedia call. For Release 5 IM Call Control function the major difference is that the application can release either specific media channels or all media channels.

· Control Media channels

This provides the ability for an application to create, shutdown or modify different media channels. Control of Media channels includes the ability to modify the destination URI of media streams.

· Request Multimedia call information
This provides the ability for an application to request information relating to the call in progress. In Release 5 IM Call Control function the application can request information such as media channels in use, bandwidth allocated, codecs used, points-in-call (receipt of 200 OK/Answer) etc. This information is asked for and reported during the progress of a call.

· Monitor Multimedia Calls
This provides the ability for an application to monitor duration and bandwidth use. For maximum flexibility the application should be able to control tariff of each media channel independently and be able to perform tariff switching on each media independently. Thus an application may specify a threshold for the duration of a call or for bandwidth usage.

· Relinquish control over call or specific media -

This allows an application to relinquish control over the call, but the call proceeds without being dropped. In Release 5 IM Call control, the application can release control either over the entire call or over specific media channels. When it relinquishes control over certain media channels it does not lose control over the entire call.

· Discovery of Client terminal capabilities
This provides the ability for an application to discover terminal/device capabilities and enable it to make intelligent decisions. Terminal capabilities include – terminal hardware, terminal software, and terminal browser.

1.2 Interact with a user

This provides the ability for an application to interact with a user. An application may be able to send specific information to the user using any media of its choice (text, video, redirection to a web page etc.) and may request the collection of data from the user in a specific media format (voice, DTMF etc.).

1.3 Information Transfer function

The Information Transfer function shall enable an application to indicate to a user respectively an application in the UE or USIM about the presence of existing information for her. Physically, this indication may be sent by the underlying network e.g. as a SMS, Instant Messaging, USSD message to the terminal. The Information Transfer function provides the means to inform the underlying network that an indication shall be sent to the user.

NOTE:
For 3G release 99 mechanisms like USSD or SMS may be employed to transfer the indication to the users terminal. For 3G Release 5 IMS Instant Messaging may be employed to transfer indication to the users terminal.
The following functions shall be supported:

-
send information notification:

-
the Send information notification function provides the means to inform the underlying network that an indication shall be sent to a user respectively an application in the UE or USIM about the presence of existing information for her;

-
request message receipt notification:

-
the application can request to receive a notification every time a message is received in the mailbox for the user. This allows the application to take the appropriate action, e.g. informing the user.

LITE GATEWAY

LITE APP

Parlay Gateway

Translate

LITE to FULL

LITE APP

PARLAY GATEWAY

LITE APP Translate

	 LITE to FULL

_1052846781.ppt

		Telecom Subscribers Identity

		Subscribed Telecom Services

		Multiple Subscriber Profiles

		Authentication Information

		CAMEL Service Ref & Trigger

		Location Information

		Policy Information

		Age of Location Information

		Terminal Capability

		Link to Settings & References

		Reference to WAP Gateway

		Reference to other Gateways

		Reference to Service 1 e.g.

 Unified Resource Locator

		Reference to Service 2 e.g.

 Object Reference

		Reference to Service Broker,

 e.g. Server Identity

_1058879376.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

Parameters

Method

_1058879465.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parlay API

_1058943600.ppt

An Example

CLASSIC

4x-element

structures

2 arrays

of unions

LITE

basic data

types

routeReq(callSessionID : in TpSessionID ,

	responseRequested : in TpCallReportRequestSet ,

	targetAddress : in TpAddress ,

	originatingAddress : in TpAddress ,

	originalDestinationAddress : in TpAddress ,

	redirectingAddress : in TpAddress ,

 	appInfo : in TpCallAppInfoSet ,

	callLegSessionID : out TpSessionIDRef) : TpResult

routeReq(callSessionID : in TpInt32 ,

	notifyEvents : TpCallEventType (enum),

	interruptEvents : PCallEventType (enum),

	noAnswerDuration: TpInt32,

	targetAddress : in TpString ,

	originatingAddress : in TpString,

	callLegSessionID : out TpInt32Ref) : TpResult

_1058879413.ppt

Metrics for Lite-ness

Number of methods in interface

Number of arguments in method

Parlay API

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

Parameters

Method

_1056809877.ppt
www.parlay.org

© 2000 The Parlay Group, Inc. All Rights Reserved.

Reference Architecture

Interfaces:

(1)	Payload Channel

(2)	Payment Processing

(3)	Clearing/Recharging

(4)	User Dialogue

(5)	Rating

(6)	Statistics/Logging

(7)	Authorization

User

Agent

Request

Engine

Rating

Engine

Payment

Engine

Settlement

ASP MIS

1

5

6

2

4

3

Authorization

Engine

7

		This architecture reflects the result of our discussion in session 3.

		The Request Engine sends payment requests to the Payment Engine via interface (2). The payment requests may contain either absolut prices or abstract product categories. If they contain abstract product categories, the Payment Engine relays the payment requests to the Rating Engine, that computes absolut price. After this, the Payment Engine processes the payment request as if it had contained the absolute price from the beginning. The Rating Engine is closely coupled with the Payment Engine and interface (5) probably not part of Parlay.

_1052845978.ppt

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Set of information provided by GSM/UMTS Service Capability Servers

Service C

Service Profile

Broker for

Service A, B, C

VAS Personal

Settings 2

VAS Personal

Settings 1

User

Profile

Access

Manager

USER

PROFILE

Value added

Services

Service B

Service A

Network Operator Domain				Value Added Service Provider Domain

UNKNOWN-0

UNKNOWN-1

UNKNOWN-2

UNKNOWN-3

UNKNOWN-4

