Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-010771
Meeting #13, Munich, GERMANY, 11 – 14 September 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-4
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Mandatory reports on routeReq() for GCC

	
	

	Source:
(

	Ericsson*

	
	

	Work item code:
(

	OSA
	
	Date: (

	2001-08-17

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Currently there are no rules on the invocation of the initial routeReq() for application initiated calls. This can result in the fact that there is an initial routeReq() invoked without requesting ‘answer’ and/or ‘failure’ events. When the initiated request fails there is no defined way to inform the application, according to the current STD. Result is that:

· routeRes() cannot be returned as the event was not armed.

· routeErr() is not applicable for call ‘failure’ events. Furthermore it is also only returned when the application requested to be notified for events.

So we can have a call where the initial routeReq() has failed when no events where armed and the application is not informed.
Another situation is the following:

An initial routeReq() is being handled and the routeReq() for the B party is invoked (state ‘Routing to Destination(s)’). If the events on the initial routeReq() are armed and the routing succeeds, the STD goes to state ‘1 Party in Call’. In this state the STD waits for an event on the B party routeReq(). If there are no events armed for the call to B, then the call will stay in state ‘1 Party in Call’, even when the routing of the B party has failed. This situation is not really leading to faults in the call handling, i.e. when the B party is removed the call will always get a callEnded() ending the whole call. But the application has lost track of the STD and status of the B party.

The problem can be solved by making the request for ‘answer’ and ‘failure’ events mandatory at invocation of the initial routeReq(). When these requests are not provided exception P_MISSING_PARAMETER is thrown. We recommend the same for the routeReq() on the B party to be able to also track the state of this party in the call. In all these cases routeErr(), as a return method of a routeReq(), has only any value to the call as the events on routeReq() are armed. So only invoke the routeErr() in that case.

	
	

	Summary of change:
(

	Add to the description of method routeReq() of interface IpCall and routeErr() in IpAppCall with a note that for an initial request the answer and call-failure events must be armed.

	
	

	Consequences if
(

not approved:
	 Applications losing track of status of call.

	
	

	Clauses affected:
(

	Chapter 6.3.3 and 6.3.4

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.3.3 Interface Class IpCall
Inherits from: IpService
The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void

Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.
In case of application initiated calls, for the initial routeReq() to the first party it is mandatory to request for ‘answer’ and ‘failure’ events at invocation, because those are needed to keep track of the state of the call. If this requirement is not met exception P_MISSING_PARAMETER is thrown. For a subsequent routeReq() to a second party it is recommended to request for ‘answer’ and ‘failure’ events to enable the application to keep track of the state of the call.
The extra address information such as originating Address is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g., when both answer and disconnect is monitored the result can be received two times.
If the application wants to control the call (in whatever sense) it shall enable event reports
targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE

6.3.4 Interface Class IpAppCall
Inherits from: IpInterface
The generic call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
	<<Interface>>

IpAppCall

	

	routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method

routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.
Method

routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

A routeErr(), as a return method on routeReq(), is only invoked when ‘failure’ events are armed at invocation of routeReq().

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.

* Contact information: Corné Fonken, Ericsson Eurolab Netherlands, tel: +31 161 242639, e-mail: Corne.Fonken@eln.ericsson.se

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 5

