3GPP TSG_CN5 (Open Service Access – OSA)
N5-010713
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-3
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Confusing meaning of prescribedMethod

	
	

	Source:
(

	Andy Bennett, Gareth Carroll, Tip Apaseesod, (Lucent)

	
	

	Work item code:
(

	OSA1
	
	Date: (

	20 July 2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Various sections of the specification convey confusion over the role of authentication methods and authentication capabilities (encryption method)

	
	

	Summary of change:
(

	It is proposed to remove references to the authentication capabilities and replace them with references to encryption methods to clarify the roles. The STD for IpAPILevelAuthentication has been reworked.

It is also proposed to remove the prescribedMethod parameter from the authenticate() methods.

	
	

	Consequences if
(

not approved:
	Confusion over the role and types of authentication capabilities will remain in the specification.

The TS will be ambiguous and difficult to implement correctly – interworking will be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4 specification and the ETSI/Parlay specifications.

	
	

	Clauses affected:
(

	4, 6.4.2, 6.4.4, 8.1.5, 9.1.2, 15.3.3, 15.3.4, and 16

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
Problem

The concept of authentication capabilities seems to be muddled within the specification. The method which is used to select these capabilities has already been renamed to selectEncryptionMethod(), because that is what the method is actually used for. None, RSA512, RSA1024, DES56 and DES128 are the values for

TpAuthCapability. These are methods used for encrypting the challenge and are therefore encryption capabilities, not authentication capabilities. Although RSA can be used as an authentication capability (due to its support for digital signatures) it is not used as such within the framework.

However, there are many places in the specification which state that the prescribedMethod (returned from selectEncryptionMethod) is used to determine how many challenge/response exchanges have to occur. The values for the authentication capabilities do not specify the number of challenge/response exchanges that need to be executed, only the method of encryption for the challenge.

Whether challenge/response exchanges are used for authentication or not is dependent on the method of authentication decided at initiateAuthentication time. The authentication method of P_OSA_AUTHENTICATION is based on CHAP, and can therefore utilise several challenge/response exchanges (until the side initiating the challenge is satisfied that the far side has authenticated correctly).

CHAP authentication is one-way, but mutual authentication (two-way) can be used if the party being authenticated decides to authenticate the other. There is no requirement within CHAP, and therefore should be no requirement within the P_OSA_AUTHENTICATION authentication type, that mutual authentication must be performed.

Proposal

Lucent believes that various sections of the specification need to be updated to remove any confusion over the role of authentication types and authentication capabilities (encryption method). We would also like to remove references to the authentication capabilities and replace them with references to encryption methods to clarify the roles.

The STD for IpAPILevelAuthentication will need to be reworked as it currently shows a failed selectEncryptionMethod resulting in the object moving to the sink state. We don’t feel that the object should automatically move to the sink state just because no matching encryption method could be found in the first invocation of selectEncryptionMethod. There is no reference to this in the text for selectEncryptionMethod. Moving back to the IDLE state would allow the application to re-evaluate its encryption capabilities before either trying again or invoking abortAuthentication (it is assumed that there is a guard timer to hold against the application holding the object indefinitely). Besides which, the exception shown for this case is incorrect in the STD.

Any text referencing one-way or two-way authentication will need to be modified as CHAP (which the authentication method used within IpAPILevelAuthentication is based on) is primarily a one-way protocol which allows for mutual authentication.

Text should be added that states that re-authentication can be requested at any time, by either party, and does not have to be mutual authentication.

Lucent would also like to propose the removal of the prescribedMethod parameter from the authenticate() methods. We feel that this parameter is redundant, as each side is already aware of the prescribedMethod. In fact, the presence of this parameter can interfere with the authentication process, as the entity receiving the authenticate() request needs to check that the prescribedMethod passed as a parameter matches the method returned in the selectEncryptionMethod. If it does not match, then an exception has to be thrown.

Note: In removing this parameter, it was found that there is no use of P_INVALID_AUTH_CAPABILITY. Should this be removed?

The framework overview section at the start of section 4 mentions that the application MUST authenticate the framework. Lucent feels that mutual authentication should not be enforced by the API, and that it should be the client application’s responsibility to decide if it needs to authenticate the framework. As long as the framework has authenticated the application, and therefore trusts it, there seems to be no reason why the framework should deny an application’s requests just because it hasn’t yet tried to authenticate the framework.

Resulting changes

4. Overview of the Framework

This subclause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the diagram below). The description of the Framework in this document separates the interfaces into these two distinct sets: Framework to Application interfaces and Framework to Service interfaces.

[image: image2.bmp]
Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy decision for the application whether it must authenticate the framework or not. It is a policy decision for the framework whether it allows an application to authenticate it before it has completed its authentication of the application.
6.4.2 Initial Access

2:
Select Encryption Method

The Application invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The application provides an indication if authentication succeeded.

5:
The Application and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using the authenticate method on the Application's API Level Authentication interface.

6.4.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client application and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The application invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the application. The framework then chooses an encryption method based on the encryption capabilities of the application and the Framework. If the application is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_ACCESS, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_ACCESS is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the application’s APILevelAuthentication interface.
NOTE: At any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: IpInterface.
	<<Interface>>

IpAppAPILevelAuthentication

	

	authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

authenticate()

This method is used by the framework to authenticate the client application. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface.

Parameters

challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod.
response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().
8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

	<<Interface>>

IpAPILevelAuthentication

	

	selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList, prescribedMethod : out TpEncryptionCapabilityRef) : TpResult

authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

selectEncryptionMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client’s authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method)
Parameters

encryptionCaps : in TpEncryptionCapabilityList
This is the means by which the encryption mechanisms supported by the client application are conveyed to the framework.
prescribedMethod : out TpEncryptionCapabilityRef

This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

This method is used by the client application to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the client’s APILevelAuthentication interface.

Parameters

challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().
Raises

TpCommonExceptions, P_ACCESS_DENIED
9.1.2 State Transition Diagrams for IpAPILevelAuthentication

[image: image3.emf]Idle

SelectingMethod

AuthenticatingClient

All

States

IpInitial.initiateAuthentication

selectEncryptionMethod

requestAccess ^P_ACCESS_DENIED

requestAccess ^P_ACCESS_DENIED

requestAccess ^P_ACCESS_DENIED

ClientAuthenticated

authenticate result(VALID)[AuthIncomplete] ^client.authenticate

requestAccess / new IpAccess

authenticate / "Buffer request"

"re-authenticate" ^client.authenticate

result(INVALID)

authenticate result(VALID)[AuthComplete] / "Process authenticate

requests"

 ^client.authenticationSucceeded

"found method" / return prescribedMethod ^client.authenticate

"no method found" ^P_NO_ACCEPTABLE_AUTH_CAPABILITY

Figure : State Transition Diagram for IpAPILevelAuthentication

9.1.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking SelectEncryptionMethod.
9.1.2.2 SelectingMethod State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It is a policy of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not. In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception is thrown and the Authentication object moves back to the IDLE state The client can now revisit its list of supported capabilities to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke abortAuthentication.
9.1.2.3 AuthenticatingClient State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework will either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state ClientAuthenticated is made, the client is informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered authenticate requests. In case the response is not valid, the Authentication object is destroyed. This implicates that the client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
9.1.2.4 ClientAuthenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.
15.3.3 TpEncryptionCapability
This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined .

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

	P_DES_128
	A simple transfer of secret information that is shared between the client entity and the framework with protection against interception on the link provided by the DES algorithm with a 128bit shared secret key

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

15.3.4 TpEncryptionCapabilityList
This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma (,)as the separation character.

16 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_APPLICATION_NOT_ACTIVATED
	An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

	P_DUPLICATE_PROPERTY_NAME
	A dupilcate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	An encryption mechanism, which is acceptable to the framework, is not supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_UNKNOWN_SERVICE_ID
	Unknown Sevice ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

Registered Services

 UI

Mobility

Control

Call

Framework

Client Application

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

