Page 1

	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12
	Tdoc N5-010693

	CR-Form-v3

	CHANGE REQUEST

	

	(

	29198-4
	CR
	CR-Num
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Introduction of sequence diagrams for MPCC services

	
	

	Source:
(

	Ericsson(

	
	

	Work item code:
(

	OSA1
	
	Date: (

	18-07-2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	In relation to the introduction of call leg STDs for MPCC new service example are
demanded to clarify the usage of the MPCC API and its relationship to call leg STDs

	
	

	Summary of change:
(

	1) Modifications to the text describing the scope for MPCC Service to be more generic (text in chapter 7)

2) add text to the “application Initiated call setup” in chapter 7.1 to cater for a
 possible extension to a 3-party call service

3) Add new message sequence diagrams for 3 new MPCC service examples
 a) Call Information Collect service (new chapter 7.4.4)
 b) Hot-line service (new chapter 7.4.5)
 c) Call Forwarding on Busy service (new chapter 7.4.6)

	
	

	Consequences if
(

not approved:
	Lacking clarification of the behaviour of MPCC API including the usage of MPCC Call Leg STDs

	
	

	Clauses affected:
(

	Section 7, 7.1 + new sections 7.4.4, 7.4.5 and 7.4.6.

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Introduction

While introducing the MPCC call leg STDs for MPCC a need was identified to provide service examples to verify the behaviour if the call leg STDs and to show some use cases of the MPCC API.

Ericsson kindly requests the meeting to consider this change and approve it for inclusion into the MPCC API.

Proposed Changes

The proposed changes in this document are:

1) Modifications to the text handling the scope for MPCC Service text in chapter 7 and
 add text to the “application Initiated call setup” in chapter 7.1 to cater for a
 possible extension to a 3-party call service.

2) New message sequence diagrams for
 a) Call Information Collect service (new chapter 7.4.4)
 b) Hot-line service (new chapter 7.4.5)
 c) Call Forwarding on Busy service (new chapter 7.4.6)

See the proposed changes below (with revision marks for changed parts).

Proposed Modifications to chapter 7 and 7.1
7 MultiParty Call Control Service

The Multi-Party Call Control API shields the complexity of the network, its protocols and specific implementation from the applications. This means that applications do not have to be aware of the network nodes a Service Capability Server (SCS) interacts with in order to provide the Multi Party Call Control service to the application. The specific underlying network and its protocols are transparent to the application.

NOTE: It should be noted that if the underlaying network is represented by CAMEL phase 3 a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations. Furthermore application initiated calls are not supported in CAMEL phase 3.
 The detailed description of the supported methods is given in the chapter 7.5.

In some of the sequence diagrams the SCS is included to indicate the MPCC API relationship with the underlaying network by indicating the network events involved. The MPCC API relationship with SCS is implementation specific. The SCS is assumed to exist. Its representation in the sequence diagrams is not intended to imply any specific implementation.
7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call. On answer from party A, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer from party B the announcement is cancelled and party B is routed to the call.
The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.
The event that causes this to happen could for example be the report of answer event from B-party or controlled by the A-party by entering a service code (mid-call event).
The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to 17 in the sequence diagram).
Proposed New Message Sequence Charts:
7.4.4 Call Information Collect service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The service may apply to ordinary two-party calls, but could also include a number translation of the dialed number and special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getInfoReq and superviseReq methods.
The answer and call release events are in this service example requested to be reported in notify mode and
additional call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate the information that can be collected and sent to the application at the end of the call.
Furthermore is shows the order in which information is sent to the application: network release event followed by possible requested call leg information, then thedestroy of the call leg object (callLegEnded method) and finally the destroy of the call object (callEnded).

[image: image1.wmf]�

AppLegB

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegA

�

LegB

�

SCS

�

AppLogic

�

5: "forward event"

�

state transition to 'Active'

�

 "continue call processing"

�

"20: disconnect from A-party

�

 "inform call object"

�

18: eventReportRes()

�

6: "new"

�

14: eventReportReq()

�

7: "new"

�

8: createCallLeg

�

 "new"

�

9: eventReportReq()

�

13: routeReq()

�

"inform call object"

�

16: continueProcessing()

�

 "inform call object"

�

state transition to "Idle"

�

19: "forward event"

�

 "inform call object"

�

36: "callEnded"

�

3: trigger event: "analysed information"

�

1: "new"

�

2: createNotification

�

"arm trigger"

�

25: callLegEnded()

�

24: "forward event"

�

"17:"B-party answer"

�

34: callLegEnded

�

26: "forward event"

�

22: "forward event"

�

state transition to "Releasing"

�

"check if application interested"

�

4: reportNotification (ADDRESS_ANALYSED)

�

"new()"

�

state transition to "Active"

�

"new()"

�

10: superviseReq

�

11: getInfoReq()

�

12: setChargePlan

�

15: getInfoReq()

�

state transition to "Releasing"

�

23: getInfoRes()

�

21: eventReportRes()

�

27:"B-party disconnected"

�

28:eventReportRes()

�

29: "forward event"

�

30: getInfoRes()

�

32: superviseRes

�

31: "forward event"

�

33: "forward event"

�

35: "forward event"

�

37: "forward event"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (“analysed information”) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

4:This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. Applied monitor mode is “interrupt”.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLeg is created to receive callbacks for another leg..

8: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

9: The application requests to be notified (monitor mode “NOTIFY”) when party B answers the call and when the leg to B-party is released.

10. The application requests to supervise the call leg to party B

11. The application requests information associated with the call leg to party b for example to calculate charging.

12. The application requests a specific charge plan to be set for the call leg to party B.

13: The application requests to route the terminating leg to reach the associated party B.

14: The application requests to be notified (monitor mode “NOTIFY”) when the leg to A-party is released.

15. The application requests to supervise the call leg to party A.

16: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the associated party B.

17: When the B-party answers the call, the termination call leg is notified.

18:Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object (monitor mode “NOTIFY”).

19.This answer message is then forwarded to the object implementing the IpAppLogic interface.

20: When the A-party releases the call, the originating call leg is notified (monitor mode “NOTIFY”) and makes a transition to “releasing state”.

21: The application IpAppLegA is notified, as the release event has been requested to be reported in monitor mode “NOTIFY”.

22: The event is forwarded to the application logic.

23: The supervised call leg information is reported.

24: The event is forwarded to the application logic.

25: The origination call leg is destroyed, the AppLegA is notified

26: The event is forwarded to the application logic.

27: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. a “originating release” indication, the terminating call leg is notified and makes a transition to “releasing state”.

28: If a network release event is received being a “terminating release” indication from called party B, the application IpAppLegB is notified, as the release event from party B has been requested to be reported in monitor mode “NOTIFY”.
Note: No report is sent if the release is caused by propagation of a network release event being an “originating release” indication coming from calling party A.

29: The event is forwarded to the application logic.

30: The supervised call leg information is reported.

31: The event is forwarded to the application logic.

32: The supervised call leg information is reported.

33: The event is forwarded to the application logic.

34: The terminating call leg is destroyed, the AppLegB is notified

35: The event is forwarded to the application logic.

36: When the originating call leg is destroyed, the AppLeg1 is notified

37: Assuming the IpCall object has been informed that the legs have been destroyed, the the IpAppMultiPartyCall is notified that the call is ended.

38: The event is forwarded to the application logic.

7.4.5 Hot-Line service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination party.
The call release is monitored to enable the sending of information to the application at call release, e.g. for charging purposes.

Note: This service could be extended as follows:
Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.
This scenario is handled in 7.4.3.

[image: image2.wmf]�

AppLegB

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegA

�

LegB

�

SCS

�

AppLogic

�

"check if application interested"

�

state transition to "Initiating"

�

4: reportNotification (CALL_ATTEMPT_AUTHORIZED(originating))

�

"new()"

�

"new()"

�

5: "forward event"

�

state transition to 'Active'

�

13: event: "address_analysed"

�

"continue call processing"

�

"14: disconnect from B-party

�

 "inform call object"

�

15: eventReportRes()

�

6: "new"

�

11: eventReportReq()

�

7: "new"

�

8: createCallLeg

�

 "new"

�

9: eventReportReq()

�

10: routeReq()

�

"inform call object"

�

12: continueProcessing()

�

 "inform call object"

�

state transition to "Idle"

�

state transition to "Active"

�

16: "forward event"

�

 "inform call object"

�

22: "callEnded"

�

3: trigger event: "originating call attempt authorized"

�

1: "new"

�

2: createNotification

�

"arm trigger"

�

state transition to "Releasing"

�

17: callLegEnded

�

18: "forward event"

�

"19: A-Party disconnected"

�

20: callLegEnded

�

21: "forward event"

�

23: "forward event"

�

state transition to "Releasing"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (originating call attempt” is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

4:This message (monitor mode “INTERRUPT”) is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLegB is created to receive callbacks for another leg..

8: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

9: The application requests to be notified (monitor mode “NOTIFY”) when the leg to party B is released.

10: The application requests to route the terminating leg to reach the associated party as specified by the application (“hot-line number”).

11: The application requests to be notified (monitor mode “NOTIFY”) when the leg to party A is released.

12: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the associated party as specified by the application (E.164 number provided by application)

13: The originating call leg is notified that the number (provided by application) has been analysed by the network and the originating call leg STD makes a transition to “active” state. The application is not notified as it has not requested this event to be reported.

14: When the B-party releases the call, the terminating call leg is notified (monitor mode “NOTIFY”) and makes a transition to “Releasing state”.

15: The application is notified, as the release event has been requested to be reported in Notify mode..

16: The event is forwarded to the application logic.

17: When the terminating call leg is destroyed, the AppLegB is notified

18: The event is forwarded to the application logic.

19: When the call release (“terminating release” indication) is propagated in the network toward the party A, the originating call leg is notified and makes a transition to “releasing state”. This release event (being propagated from party B) is not reported to the application.

20: When the originating call leg is destroyed, the AppLegA is notified

21: The event is forwarded to the application logic.

22: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

23: The event is forwarded to the application logic.

7.4.6 Call Forwarding on Busy service

The following sequence diagram shows an application establishing a call forwarding on busy.
When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system.

[image: image3.wmf]�

AppLegC

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegC

�

LegA

�

LegB

�

SCS

�

AppLogic

�

state transition to "Active"

�

state transition to "Releasing"

�

"new"

�

"new"

�

"check if application interested"

�

"new"

�

"inform call object"

�

state transition to "Idle"

�

10: eventReportReq()

�

11: routeReq()

�

state transition to "Active"

�

1: "new"

�

 2:createNotification()

�

 "arm trigger"

�

 3: trigger event: "busy"

�

4:reportNotification (terminatingRelease(busy))

�

5: "forward event"

�

6: "new"

�

7: "new"

�

9: createCallLeg

�

"new"

�

12 :continueProcessing()

�

8: "new"

�

13: C-Party answer"

�

14: eventReportRes()

�

15: "forward event"

�

"inform call object"

�

"continue call processing"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (“busy”) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

4:This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. (monitor mode “INTERRUPT”).

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLegA is created to receive callbacks for another leg..

8: A new AppCallLegC is created to receive callbacks for another leg..

9: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

10: The application requests to be notified (monitor mode “INTERRUPT”) when party C answers the call..

11: The application requests to route the terminating leg to reach the associated party C.
The application may request if so desired a call redirection by including the original destination address (field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo) in the request to route the call leg to the remote party C.

12: The application requests to resume call processing for the terminating call leg to party B to terminate the leg. Alternative the application could request to deassign the leg to party B for example if it is not interested in possible requested call leg information (getInfoRes, superviseRes).
 When the terminating call leg is destroyed, the AppLegB is notified and the event is forwarded to the application logic (not shown). As a result call processing is resumed in the network that will try to reach the associated party C.

13: When the party C answers the call, the termination call leg is notified (monitor mode “NOTIFY”).

14:Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call being answered back to its callback object.

15.This answer message is then forwarded to the object implementing the IpAppLogic interface.

(Contact: Jørgen Dyst (Jorgen.dyst@lmd.ericsson.se)

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 13

