Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-010657
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	SpecNumber
	CR
	CRNum
	(

rev
	-
	(

Current version:
	x.y.z
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Signing algorithm selection

	
	

	Source:
(

	Ericsson (Ard-Jan Moerdijk)

	
	

	Work item code:
(

	OSA
	
	Date: (

	9-7-01

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The current specification is not clear on the signing algorithm the application can expect from the Framework and vice versa.

	
	

	Summary of change:
(

	Proposal is to specify in the specification that the procedure is to start with the encryption mechanism with the highest level of encryption.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
4.1.1 Interface Class IpAppAccess

Inherits from: IpInterface.
The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access.

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The Framework will always start with proposing the signing algorithm with the highest level of encryption. In case this signing algorithm is not supported by the client the algorithm with the next highest level of encryption will be proposed.
digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client application, and should take steps to terminate the client application's access session WITHOUT invoking terminateAccess() on the client application. This follows a generally accepted security model where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The Framework will always start with proposing the signing algorithm with the highest level of encryption. In case this signing algorithm is not supported by the client the algorithm with the next highest level of encryption will be proposed.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
4.1.2 Interface Class IpAccess

Inherits from: IpInterface.
	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef, fwInterface : out IpInterfaceRefRef) : TpResult

selectService (serviceID : in TpServiceID, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

Method

obtainInterface()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the client application is required to supply a callback interface to the framework.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME
Method

obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
appInterface : in IpInterfaceRef

This is the reference to the client application interface, which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
fwInterface : out IpInterfaceRefRef

This is the reference to the interface requested.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME,P_INVALID_INTERFACE_TYPE
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
serviceToken : out TpServiceTokenRef

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface.
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_SERVICE_ID
Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The application should always start with proposing the signing algorithm with the highest level of encryption. In case this signing algorithm is not supported by the framework, the algorithm with the next highest level of encryption should be proposed.
signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpString;

serviceMgrInterface:
 IpInterfaceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNATURE
Method

endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.
Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

