Page 1
Draft prETS 300 ???: Month YYYY

Page 4

Temporary document N5-010627Alc12CorrConfCall
Joint 3GPP TSG_CN5/ ETSI SPAN 12
16-18 July 2001
ETSI, Sophia Antipolis

Source:
Alcatel

Title:
Corrections to the Conference Call Control Service.

Date:

16 July 2001

Document for:
API for Open Service Access.
Agenda item:
6.3

1 Introduction

This contribution proposes a number of corrections to be included into the Section 9 for Draft ETSI ES 201 915-4 V0.0.5 (2001-06) on the Conference Call Control Service.

2 Proposed Corrections.

Replace the figures of section 9.2 with the figures included below.

9.2
Class Diagrams

The conference call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the conference call control application package and the conference call control service package.
This class diagram shows the interfaces that make up the application conference call control service package and the relation to the interfaces in the conference call control service package.
The diagram also shows the inheritance relation between the multi-party call application interfaces and the conference call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.
Communication between the application and service packages is done via the <<uses>> relations; the interfaces can communicate with callback methods in the corresponding application interfaces.

[image: image1.wmf]IpAppConfCall

partyJoined()

leaveMonitorRes()

(from cccs)

<<Interface>>

IpAppConfCallControlManager

conferenceCreated()

(from cccs)

<<Interface>>

IpAppSubConfCall

chairSelection()

floorRequest()

(from cccs)

<<Interface>>

IpConfCall

getSubConferences()

createSubConference()

leaveMonitorReq()

(from cccs)

<<Interface>>

IpSubConfCall

splitSubConference()

mergeSubConference()

moveCallLeg()

inspectVideo()

inspectVideoCancel()

appointSpeaker()

chairSelection()

changeConferencePolicy()

(from cccs)

<<Interface>>

IpConfCallControlMana

ger

createConference()

checkResources()

reserveResources()

freeResources()

(from cccs)

<<Interface>>

1

0..n

1

0..n

<<uses>>

IpAppMultiMediaCallControl

Manager

reportMediaNotification()

(from mmccs)

<<Interface>>

IpAppMultiMediaCall

superviseVolumeRes()

superviseVolumeErr()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow()

mediaStreamMonitorReq()

getMediaStreams()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes()

(from mmccs)

<<Interface>>

1

0..n

1

0..n

1

0..n

<<uses>>

<<uses>>

1

0..n

1

0..n

<<uses>>

1

0..n

Figure: Application Interfaces
This class diagram shows the interfaces that make up the conference call control service package.
The diagram also shows the inheritance relation between the multi-party call interfaces and the conference call interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.
Furtermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each subconference contains zero or more call legs associated. Detached legs are not associated with any specific subconference, instead they are associated with the conference call itself.

[image: image2.emf]IpConfCall

getSubConferences()

createSubConference()

leaveMonitorReq()

(from cccs)

<<Interface>>

IpConfCallControlManager

createConference()

checkResources()

reserveResources()

freeResources()

(from cccs)

<<Interface>>

10..n

IpSubConfCall

splitSubConference()

mergeSubConference()

moveCallLeg()

inspectVideo()

inspectVideoCancel()

appointSpeaker()

chairSelection()

changeConferencePolicy()

(from cccs)

<<Interface>>

IpMultiMediaCallControlMana

ger

createMediaNotification()

destroyMediaNotification()

changeMediaNotification()

getMediaNotification()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow()

mediaStreamMonitorReq()

getMediaStreams()

(from mmccs)

<<Interface>>

10..n

1

0..n

1

0..n

Figure: Service Interfaces

Make the following corrections to section 9.3.3.

9.3.3
Interface Class IpConfCall
Inherits from: IpMultiMediaCall
The conference call manages the subconferences. It also provides some convenience methods to hide the fact of multiple subconferences from the applications that do not need it. Note that the conference call always contains one subconference. The following inherited call methods apply to the conference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the entire conference, including all the subconferences and detached legs.

- deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the conference, or on any of the contained subconferences or call legs.

- getInfoReq; request information over the complete conference. The conference duration is defined as the time when the first party joined the conference until when the last party leaves the conference or the conference is released.
- setChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless another chargeplan is explicitly overridden on the subconference.

- superviseReq; supervise the duration of the complete conference.

- getCallLegs; return all the call legs used within the conference.

- superviseVolumeReq; supervises and sets a granted data volume for the conference.

Other methods apply to the default subconference. When using multiple subconferences, it is recommended that the application calls these methods directly on the subconference since this makes it more explicit what the effect of the method is:

- createAndRouteCallLeg

- createCallLeg
Make the following corrections to section 9.3.5.

9.3.5
Interface Class IpSubConfCall
Inherits from: IpMultiMediaCall
The subconference is an additional grouping mechanism within a conference. Parties (legs) that are in the same subconference have a speech connection with each other. The following inherited call methods apply to the subconference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

-· release; releases the subconference, including all currently attached legs. When the last subconference in the conference is released, the conference is implicitly released as well.

-· deassignCall; de-assigns the subconference. No callbacks will be received by the application on this subconference, nor will the gateway accept any methods on this subconference or accept any methods using the subconfernece as a parameter (e.g., merge). When the subconference is the last subconference in the conference, the conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.

-· getlInfoReq; request information over the subconference. The subconference duration is defined as the time when the first party joined the subconference until when the last party leaves the subconference or the subconference is released.

-· setChargePlan; set the charge plan for the subconference.

-· superviseReq; supervise the duration of the subconference. It is recommended that this method is only used on the complete conference.

- superviseVolumeReq; supervises and sets a granted data volume for the subconference.
-· getCallLegs; return all the call legs in the subconference.

-· createCallLeg; create a call leg .

-· createAndRouteCallLeg; implicitly create a leg and route the leg to the specified destination.
* Contact:
Frans Haerens

(+32-3-240.90.34 / * frans.haerens@alcatel.be

D:\API\2001_Jul_SophiaAntipolis\AlcatelContributions\N5-010627Alc12CorrConfCall.doc

