Page 1
Draft prETS 300 ???: Month YYYY

Page 5

Temporary document N5-010625Alc10MediaStream
Joint 3GPP TSG_CN5/ ETSI SPAN 12
16-18 July 2001
ETSI, Sophia Antipolis

Source:
Alcatel

Title:
Media streams versus channels (Section 8.1 update).

Date:

16 July 2001

Document for:
API for Open Service Access.
Agenda item:
6.3

1 Introduction

This contribution proposes the adoption of media streams instead of channels to be included into the OSA draft ETSI ES 201 915-4 section 8.1.

2 Call Control issues related to the Media channel monitoring

The following two issues were raised during previous discussions based on contributions to the Joint 3GPP CN5/SPAN12/PARLAY October 2000 Vienna and November 2000 Sophia Antipolis meeting

i)
A media stream is defined in SIP/SDP and Megaco as bi-directional while in H.245 it is defined as an unidirectional logic channel. Would it not be advantageous to define bi-directional streams and control send/receive, send only and receive only. As an example Megaco defines the following for the stream descriptor: A Stream descriptor specifies the parameters of a single bi-directional stream. These parameters are structured into three descriptor: one that contains termination properties specific to a stream and one each for the local and remote flows.

ii)
How is the monitoring performed for media channels which are unidirectional, this means that if bi-directional RTP streams are established by SIP/SDP then the monitoring has to be forked to unidirectional media channels in PARLAY (logical channels in H.245)..

This contribution proposes to line up with the concept of media stream and indicates the various changes required in section 8.1 to achieve this gaol.

8.1
Sequence Diagrams

8.1.1
Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of one call.

In this sequence there is one application handling both the media barring and the routing of the call.

[image: image1.wmf] : (Logical

View::IpApp...

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

 :

IpAppMultiMediaCallLeg

1: new()

2: createNotification ()

3: reportNotification ()

4: "forward event"

10: createAndRouteCallLegReq ()

6: mediaStreamMonitorReq()

9: mediaStreamAllow()

7: mediaStreamMonitorRes()

5: new()

8: "forward event"

11: mediaStreamMonitorRes()

12: "forward event"

13: mediaStreamAllow()

1:
The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods.

2:
The application expresses interest in all calls from subscriber A. Since createNotification is used and not createMediaNotification all calls are reported regardless of the media used.

3:
A makes a call with the SIP INVITE with SDP media stream indicating video. The application is notified.

4:
The event is forwarded to the application.

5:
The application creates a new AppMultiMediaCallLeg interface to receive callbacks.

6:
The application sets a monitor on video media streams to be established (added) for the indicated leg.

7:
Since the video media stream was included in the SIP INVITE, the media streams monitored will be returned in the monitor result.

8:
The event is forwarded to the application.

9:
The application denies the video media stream, i.e., it is not included in the allowed media streams . This corresponds to removing the media streams from the setup.

10:
The application requests to reroute the call to a different destination (or the same one...)

11:
Later in the call the A party tries to establish a lower bandwidth video media stream. This is again reported with MediaStreamMonitorRes.

12:
The event is forwarded.

13:
This time the application allows the establishment of the media stream by including the media stream in the allowed list.

8.1.2.
Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

[image: image2.wmf]callLogic :

(Logical View:...

callAppLogic :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

PartyA :

IpMultiMediaCallLeg

PartyB :

IpAppCallLeg

PartyB :

IpAppCallLeg

PartyA :

IpMultiMediaC...

 : IpAppMultiMediaCall

mediaAppLogic :

IpAppMultiMediaCallControlManager

mediaLogic :

(Logical View::I...

1: new()

2: createNotification ()

5: reportNotification ()

6: "forward event"

12: createAndRouteCallLegReq ()

7: new()

9: reportMediaNotification ()

19: reportMediaNotification ()

3: new()

4: createMediaNotification()

10: "forward event"

14: mediaStreamAllow()

15: deassignCall()

20: "forward event"

21: mediaStreamAllow()

22: deassignCall()

8: new()

11: new()

13: new()

16: eventReportRes()

17: "forward event"

18: deassignCall()

1:
The application creates a new AppMultiMediaCallControlManager interface.

2:
The application expresses interest in all calls from subscriber A for rerouting purposes.

3:
The application creates a new AppMultiMediaCallControlManager interface. This is to be used for the media control only.

4:
Separately the application expresses interest is some media streams for calls from and to A. The request indicates interrupt mode.

5:
Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media establishment is combined with the SIP INVITE message , both applications are triggered (not necessarily in the order shown).

Here the call application is notified about the call setup.

6:
The event is forwarded to the call control application.

7:
The call control application creates a new AppMultiMediaCall interface.

8:
The call control application creates a new AppMultiMediaCallLeg interface.

9:
The media application is notified about the call setup. All media streams from the setup will be indicated.

10:
The event is forwarded to the media application.

11:
The call control application creates a new AppMultiMediaCallLeg interface.

12:
The call application decides to reroute the call to another address. Included in the request are monitors on answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are confirmed or rejected.

13:

14:
The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a changed SDP parameter reflecting the manipulated media).

15:
The Media application is no longer interested in the call.

16:
When the B subscriber answers the call application is notified.

17:
The event is forwarded to the call application.

18:

19:
When later in the call A tries to establish a lower bandwidth video stream the media application is triggered.

20:
The triggering is forwarded to the media application.

21:
The application now allows the establishment of the media stream by including the media stream in the mediaStreamAllow list.

22:
The media application is no longer interested in the call.

8.1.3.
Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

[image: image3.wmf] : (Logical

View::IpApp...

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlMan...

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

1: new()

2: createMediaNotification()

3: reportMediaNotification ()

4: "forward event"

6: deassignCall()

5: mediaStreamAllow()

1:
The application starts a new AppMultiMedialCallControlManager interface for reception of callbacks.

2:
The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface.

3:
Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4:
The message is forwarded to the application.

5:
The application indicates that the setup of the media streams is not allowed by not including the media stream in the allowed list. This has the effect of supressing the video capabilities in the setup.

6:
The application is no longer interested in the call.

New attempts to open video media streams will again be indicated with a createMediaNotification.

8.1.4.
Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

[image: image4.wmf] :

IpMultiMediaCallControlManager

 :

IpAppMultiMediaCall

 : (Logical

View::IpAppL...

 :

IpMultiMediaCall

 : IpUICall

IpUIManager :

IpUIManager

 :

IpAppMultiMediaCallContr...

 : IpAppUICall

4: createCall(in IpAppMultiPartyCallRef)

3: new()

5: routeReq()

8: routeReq()

9: routeRes()

10: "forward event"

6: routeRes()

7: "forward event"

12: superviseVolumeRes()

13: "forward event"

15: sendInfoAndCollectReq()

16: sendInfoAndCollectRes()

17: "forward event"

19: superviseVolumeReq()

20: release()

11: superviseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCallback()

1:
The application creates a new interface to receive callbacks on the call control manager.

2:
The created interface is set as the callback interface for the call control manager.

3:
The application creates a new interface to receive callback on the call.

4:
The application requests the creation of a call.

5:
The application initiates the call by routing to the origination. This will implicitly create a call leg. The application requests a notification when the party answers.

6:
When the A party answers the application is notified.

7:
The message is forwarded to the logic.

8:
The application also routes the call to the destination. This implicitly creates a call leg. The application requests to be notified on answer of the B-party.

9:
When the B-party answers the application is notified.

10:
The message is forwarded to the logic.

11:
The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes that may be transferred. The application specifies that if the limit is reached the application should be notified.

12:
When the limit is reached a notification is send to the application.

13:
The message is forwarded to the logic.

14:

15:
The application plays an announcement to the user, asking whether the user wants to end the call or continue the call.

16:
When the user answers whether the call should continue.

17:
The message is forwarded to the logic.

18:
The UIcall is released, since no further announcements are needed.

19:
In case the user answers that the call should continue, the supervision is reset with a new maximum number of allowed bytes. (note this might have charging consequences, not shown)

20:
If the user answered that the call should not continue, the call is released.

* Contact:
Frans Haerens

(+32-3-240.90.34 / * frans.haerens@alcatel.be

D:\API\2001_Jul_SophiaAntipolis\AlcatelContributions\N5-01065Alc10MediaStreams.doc

