3GPP TSG_CN WG5#12

Tdoc N5-010608

Sophia Antipolis, France

15th – 19th July, 2001

Source:
Telcordia Technologies
Title:
Clarify Redirection support
Agenda item:

Document for:
DISCUSSION/APPROVAL

1 Introduction

This document is based on ‘N5-010606-call-leg-std-4.doc’. Changes I made to this document are in this colour.

This document signals that the current Call Leg STD and Call Leg creation & routing methods do support redirection, but additional clarification is needed. Two cases are distinguished, network initiated call forwarding and application initiated call forwarding. Application initiated call forwarding results in sending the appropriate signalling messages.

Take SIP, for example, SIP has an INVITE and 3xx FORWARD messages. The 3xx messages are returned upstream if the call should be rerouted. The INVITE message, on the other hand, is modified and sent downstream if call forwarding takes place. The modified INVITE will carry both the original address and the modified/forwarded address. Thus, in order to forward a call, an application must invoke a method on the API that results either in constructing the 3xx or in the modified INVITE. It was found that routeReq() and createAndRouteCallLeg() are the appropriate methods to cause these messages. However, since call legs are immutable, a new call leg must be created (and routed) and the old call leg object must be released. Additionally, the ‘original address’ and the ‘forwarded address’ fields in the SIP message must be populated. This calls for extending the semantics of the call leg creation methods with the statement that if the ‘original called address’ field is populated, redirection is implied. Note that either the value of the field ‘redirection address’ or ‘original called address’ is returned when invoking the method ‘getLastRedirectedAddress’.

Our approach to network initiated call forwarding is symmetrical to application oriented call forwarding. In case the API implementation is made aware of the ‘forwarding’ activity, e.g. through receiving a 3xx FORWARD message, the API implementation must release the original call leg object with an appropriate cause code and create the new call leg that relates to the forwarded address. Note that the appropriate ‘dynamic event’ subscriptions are also copied.

2
Detailed changes

1.1.1 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs explicitly. An application may create more then one call leg.
	<<Interface>>

IpMultiPartyCall

	

	getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, callLeg : out TpCallLegIdentifierRef) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit setMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used. In case the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in argument appInfo is used, this method invocation causes redirection.
If this method in invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA
1.1.2 Interface Class IpCallLeg
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
	<<Interface>>

IpCallLeg

	

	routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpMultiPartyCallIdentifierRef) : TpResult

setMedia (callLegSessionID : in TpSessionID, mediaAttached : in TpBoolean) : TpResult

getMedia (callLegSessionID : in TpSessionID, mediaAttached : out TpBoolean) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) : TpResult

continueProcessing (callLegSessionID : in TpSessionID) : TpResult

getMoreDialledDigitsReq (callLegSessionID : in TpSessionID, length : in TpInt32) : TpResult

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in TpDuration) : TpResult

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

deassign (callLegSessionID : in TpSessionID) : TpResult

routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is used, otherwise network or gateway provided addresses will be used. In case the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in argument appInfo is used, this method invocation causes redirection.
Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
targetAddess : in TpAddress

Specifies the destination party to which the call leg should be routed
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
1.1.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams. One for the originating call legs and one for the terminating call legs. Note that some states intentionally have the same name and behaviour.

In one state multiple dynamic events can be fired. Most events follow a sequence; an event cannot be fired after an event following in sequence is fired. This text clarifies the sequence in case multiple events are sent in the same state. In the Terminating Call Leg’s ACTIVE state the following events can be fired: terminatingCallAttemptAuthorized, mid-call, redirected, alerting, and answer. In this state, the redirected event can always be fired, after firing the redirected event no other event in this state can be fired. After the terminatingCallAttemptAuthorized, all previously mentioned events (except terminatingCallAttemptAuthorized) can be fired. After the alerting event, only the mid-call and answer event can be fired. After the answer event, only the mid-call event can be fired. Note that the network_released event is fired when entering a subsequent state: RELEASED.
[image: image1.png]e
prrvp————

rosrea

dincledbmedpAooCalLes. |feminafnaCalafenptavhorssdomed
contruporizes "l e sanfeportfes
alrngtamed) nidcalevenamed]

ApApaCalLi ninssrtnes /T pABOCAILe eaniFeportfes
ansertamed)

psppcalleg uenoorts]

st
firii

etk eldsetamed)

orppcallea untorties

nsopHFarbCalCon ol
eporhioffcafon minaing .

o,
i snsver)

piifparbcal rateandrortlteshe

e st =) psopuiEarbeiicon olianage.
5 T et i
- o | Garsendrepors e s

ppcallen allegendsd
dasin

[ransonsues ot v
s,

Coin prcesin, sfstciectcdcnss, secal,snding stnfonss,
Sipeniseges o s change,

[l et ekeasing:

cvenreporte setadicestharse, etnfopes sipeisesea
tcharseranpin

Figure : Application view on the Terminating CallLeg object

TpCallReleaseCause

Defines the reason for which a call is released.

	Name
	Value
	Description

	P_UNDEFINED
	0
	The reason of release isn’t known, because no info was received from the network.

	P_USER_NOT_AVAILBLE
	1
	The user isn’t available in the network. This means that the number isn’t allocated or that the user isn’t registered.

	P_BUSY
	2
	The user is busy.

	P_NO_ANSWER
	3
	No answer was received

	P_NOT_REACHABLE
	4
	The user terminal isn’t reachable

	P_ROUTING_FAILURE
	5
	A routing failure occurred. For example an invalid address was received

	P_PREMATURE_DISCONNECT
	6
	The user disconnected the call during setup phase.

	P_DISCONNECTED
	7
	Call disconnect by the end user.

	P_CALL_RESTRICTED
	8
	The call was subject of restrictions

	P_UNAVAILABLE_RESOURCE
	9
	No resources where available to establisch the call.

	P_GENERAL_FAILURE
	10
	A general network failure occurred.

	P_TIMER_EXPIRY
	11
	The call was released because an activity timer expired.

	P_REDIRECTED
	12
	The call leg was released because of redirection.

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types of events.
	
	Tag Element Type
	

	
	TpCallEventType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element

Name

	P_CALL_EVENT_UNDEFINED
	NULL
	Undefined

	P_CALL_EVENT_CALL_ATTEMPT
	NULL
	Undefined

	P_CALL_EVENT_ADDRESS_COLLECTED
	TpAddress
	CollectedAddress

	P_CALL_EVENT_ADDRESS_ANALYSED
	TpAddress
	CalledAddress

	P_CALL_EVENT_PROGRESS
	NULL
	Undefined

	P_CALL_EVENT_ALERTING
	NULL
	Undefined

	P_CALL_EVENT_ANSWER
	NULL
	Undefined

	P_CALL_EVENT_RELEASE
	TpCallReleaseCause
	ReleaseCause

	P_CALL_EVENT_REDIRECTED
	TpAddress, TpCallLegIdentifierRef
	ForwardAddress

	P_CALL_EVENT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

