	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001
	N5-010604

Source:
Ulticom :

Stephanie.Dithurbide@ulticom.com

Title:
Service Access Sequence
Agenda Item:

Document for:
Approval
Category:
TS
Work Item ID:

Doc Summary:

Specs involved:
120070-3

Problem

We have a problem with the IpAccess class description in ETSI 120070-3 section 6.4.1.

In Section 8.1.2 IpAppAccess.signServiceAgreement method description says: “This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework.”

The sequence diagram of section 6.4.1 shows the same order.

According to the spec the client application invokes selectService() and get a token identifying the service as a return value.

Then, the framework has to invoke signServiceAgreement(token, ..,...) on the client app. Since at this point the client app is controlling the execution (the client app is the one who invoked selectService()), that means that

signServiceAgreement() has to be invoked by the framework in a separated thread started just before the end of the execution of selectService().

In the implementation of IpAppAccess.signServiceAgreement(), the client application is supposed to check if the token is valid. The problem is that we cannot be sure that the token has already been received (i.e. selectService() has returned).

If the framework invokes signServiceAgreement just after the selectService call, it's impossible to ensure that the client application already received the token returned by selectService. This token is mandatory to implement the IpAppAccess.signServiceAgreement.

· A possible implementation solution would be to check if selectService() has returned (and to wait for the result if it has not) in the client app before checking the token in IpAppAccess.signServiceAgreement(). Though it complicates quite a lot the development on the client side (usually you have to use threads, mutex and timers) it is feasible. But we want to keep the development of client application as simple as possible.

· Another solution would be to swap the order of the signServiceAgreement calls. After invoking IpAccess.selectService, the client calls IpAccess.signServiceAgreement. Within the execution of the IpAccess.signServiceAgreement the framework calls IpAppAccess.signServiceAgreement.

Proposal

Ulticom proposes to modify the diagrams in 6.4.1 and 14.4.1 of the

ETSI OSA to swap the order of the signServiceAgreement invocations, and to change Section 8.1.2 the method description of IpAppAccess.signServiceAgreement to specify that this method should be invoked by the framework only when the client already invoked IpAccess.SignServiceAgreement on the framework.

The client should invoke signServiceAgreement first and the framework in turn can invoke signServiceAgreement on the client.

Ulticom would like to impose that the client App invokes IpAccess.signServiceAgreement() BEFORE the framework invokes IpAppAccess.signServiceAgreement(), to be sure that the client App already received the token.

That means swaping calls 3 and 4 in the sequence diagram of section 6.4.1. and updating the IpAppAccess.signServiceAgreement method documentation to explain that this order is mandatory.

Section 8.1.6 IpAccess.signServiceAgreement does not need to be updated.

It says that the client invokes the method, then, if the framework agrees, both parties sign the service agreement.

The latter case seems to imply that the client acts first and invokes IpAccess.signServiceAgreement. The framework then performs any internal processing it needs to do and then invokes IpAppAccess.signServiceAgreement(), presumably within the same thread. The application does what it needs to, then the IpAppAccess.signServiceAgreement() returns, the framework creates the service manager and then passes it back as a return parameter.

Resulting Changes

6.4.1.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

[image: image1.wmf]

 : IpAccess

 : IpAppAccess

Application

1: selectService()

2: signServiceAgreement()

3: signServiceAgreement()

1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement.

2:
Service Selection: second step - signServiceAgreement

In this second step the client application requests that the framework sign an agreement on the service, which allows the client application to use the chosen SCF version. If the framework agrees, both parties sign the service agreement. Once the contractual details have been agreed upon, then the Application can be given the means to actually use the service. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the service factory the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the service factory interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

8.1.2
Interface Class IpAppAccess

Inherits from: IpInterface.
The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access.

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called when the client application calls the signServiceAgreement() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.) If the serviceToken is invalid, or not known by the client application, then an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.
14.4.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding sections.

[image: image3.wmf]

 : IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : IpCallControlManager

 : IpAppAccess

GenericCallControlService :

IpSvcFactory

1: selectService()

3: signServiceAgree

ment()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The client asks the framework to sign the service agreement.

3:
The client application signs the service agreement.
.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The service factory creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

2-continued: As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application
_1055251933.doc

 : IpAccess

 : IpAppAccess

Application

1: selectService()

2: signServiceAgreement()

3: signServiceAgreement()

_1055247598.doc

 : IpAppCallControlManager

AppLogic

 : IpInitial

 : IpAccess

 : IpCallControlManager

 : IpAppAccess

GenericCallControlService :

IpSvcFactory

1: selectService()

3: signServiceAgreement()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

