
3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #12, Sophia Antipolis, France, 16 – 19 July 2001
Tdoc N5-010599

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Additional Authentication Sequence Diagrams
Agenda Item:

Document for:
Approval
Category:
TS
Doc Summary:
Additional authentication sequence diagrams illustrating some example authentication scenarios
Specs involved:
DTS/SPAN-120070-4
Problem Description

The existing sequence diagrams as contained in section 6.4 do not provide a sufficiently detailed illustration of functionality and possible sequence of events during authentication. An improvement of this information was requested at the last meeting in San Diego and is now brought to the meeting for approval.

Solution

We feel that the following scenarios need to be covered: -

1. Mutual authentication with overlapping authenticate invocations

2. Multiple authenticate invocations before authentication is deemed successful

3. Re-authentication during an Access session.

Mutual Overlapping Authentication

In this scenario one entity invokes authenticate but the other entity’s policy is that it must authenticate the first one before providing a response.

Multiple authenticate() invocations

In this scenario one side’s policy is to invoke authenticate twice (with a different challenge each time) before considering the other side to be successfully authenticated.

Re-authentication during access session

It is possible for one party or another to decide that even though authentication has already taken place its level of trust in the other party has dropped and it wishes to re-authenticate them.

Resultant Changes

Note that the subsections within 6.4 appear to have a number of problems of ordering: -

1. 6.4.1 should come after 6.4.4

2. The diagram in 6.4.2 (along with the associated numbered text) actually belongs in 6.4.4

3. The diagram in 6.4.3 belongs in 6.4.2

6.4 Trust and Security Management Sequence Diagrams

6.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

[image: image1.wmf] : IpAccess

 : IpAppAccess

Application

Framework

1: selectService()

2: signServiceAgreement()

3: signServiceAgreement()

1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement.

2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the service factory the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the service factory interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.

6.4.2 Initial Access

The following figure shows an application accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the Application must first of all authenticate itself with the Framework. For this purpose the application needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the Application has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface only supports the initiateAuthentication method to allow the authentication process to take place.

Once the Application has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the application requests a certain type of access SCF.

[image: image2.wmf]Application

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 : IpAppAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

1:
Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The Application invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the authentication methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The application provides an indication if authentication succeeded.

5:
The Application and Framework authenticate each other using the prescribed method. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using the authenticate method on the Application's API Level Authentication interface.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful (mutual) authentication, the Application invokes requestAccess on the Framework's API Level Authenticaiton interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

8:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.4.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution tecnology mechanism.

[image: image3.wmf]Application

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution

Technology Mechanism is used

for application identification and

authentication.

1:
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. In this case, the application selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The application invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the application.

3:
If the authentication was successful, the application can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.4.4 API Level Authentication

These sequence diagrams illustrate the two-way mechanism by which the client application and the framework can mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The application invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the authentication capabilities of the application. The framework then chooses an authentication method based on the authentication capabilities of the application and the Framework. If the application is capable of handling more than one authentication method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. Depending on the authentication method selected, the protocol may require invocations on the API Level Authentication interface supported by the Framework; or on the application counterpart; or on both.
Example Sequence Diagrams
Mutual Authentication
This is an example of mutual authentication between the Client Application and the Framework.
1:
Initiate Authentication

The Application invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The Application invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the authentication methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The application provides an indication if authentication succeeded.

5:
The Application and Framework authenticate each other using the prescribed method. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using the authenticate method on the Application's API Level Authentication interface.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful (mutual) authentication, the Application invokes requestAccess on the Framework's API Level Authenticaiton interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

8:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

[image: image4.wmf]Application

 : IpInitial

 :

IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpAppAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4:

authenticationSucceeded()

6:

authenticationSucceeded()

Mutual Overlapping Authentication

In this scenario the Client Application invokes authenticate but the Framework’s policy is that it must successfully authenticate the Client Application before providing a response.

[image: image5.png]ClientApplicatio]
n

IpAppAPILevel
Authentication

Iplniial

IpAPILevelAuth
entication

Eramework

initiajeAuthentication |

L

se\e:tEn:vypﬂnnV\‘yethnd

authenticate |

authenticalq

autheniicationSuckeeded

auhenticationSuccesded |

|

J

|
|
1
1
|
|
|
|
|
|
|
|
|

Multiple authenticate invocations

In this scenario the Framework’s policy is to invoke authenticate twice (with a different challenge each time) before considering the Client Application to be successfully authenticated. The sequence diagram illustrates that the authenticationSucceeded method is not paired with the authenticate invocation but is invoked when the Framework considers the Client Application authenticated.

[image: image6.png]ClientApplicatio| [pAppAPILevel
Authentication

Tplniial

IpAPILevelAuth
entication

Eramework

initiajeAuthentication

|
1

authenticate

1
|
W |
I
|
|
I

authenticationSucceeded

sewmsmypunn%emna
f
I

autherticaty

authenticate

authenticationSucceeded

- —

i
!
|
|
|
|
|
|
|
|
|
|
|
|

Re-authentication during an access session

It is possible for one party or another to decide that even though authentication has already taken place its level of trust in the other party has dropped and it wishes to re-authenticate them.

This sequence diagram illustrates the case where the Client Application has been successfully authenticated and has started an access session but the Framework subsequently decides that it doesn’t now fully trust the Application.
If re-authentication was to fail the access session would be terminated.

[image: image7.png]Clientépplicatio| [bAnpAP LLewl Iplntial IpAPiLevelfuth| [IpAccess Framework

n Authentication entication

iniigfeuthentication | | |

| 1 | |

1 1 se\e:tE4:vymwnnMethnd 1 1

f T f f

1] | | | |

| authenticate | | |

f |

I authenticatg |

autherticationSuckeeded |

f |

authenticationSucceeded ! d }

u |

requestAccess |

create

obtaininterfae

)

TIME PASSES -
Framework's level of

re-athenticate the Client
Application

authenticate

authenticationSucceeded

———— g ———

t
|
|
I
|
|
|
|
I st reguires it 1o
|
|
|
|
I
T
|
|
|
I

T
|
|
I
|
1
|
|
|
|
|
|
|
t
|
|
|
I

R I

U
}
|
|
|
|
|
|
|
|

|
!
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

_1056192022

_1056547414.doc

Application

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 : IpAppAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

_1056267048

_1056191741

