3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #12, Sophia Antipolis, France, 16 – 19 July 2001
Tdoc N5-010596

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Response to the proposal to combine FW interfaces
Agenda Item:

Document for:
Approval
Category:
TS
Doc Summary:

Specs involved:
120070-3
Combining Parlay interfaces issues

The Parlay specification currently provides a clear distinction of interfaces between domains – IpApp* exclusively interfaces to Ip*, while IpFw* only interfaces to IpSvc*. This differentiation specifies explicitly through what set of interfaces interaction is possible between a client APP and the Framework, and between the Framework and the service entities. Major considerations that encourage separation of interfaces are:

· Method semantics can be clearly defined, and understood. For example, IpServiceDiscovery provides a means for a client APL to discover what services are available. Through a set of identically named methods on the interface IpFwServiceDiscovery, the service provider can query the Framework of registered services for service management purposes.

· Divergence of functionality is simple. Because both sides of communication (APP-FW, and FW-SVC) are separated, they are freed from complication if they decide to diverge to meet new requirements. Methods, or parameters to existing methods, that only applications need to use can be added easily, without cluttering the interface that a service instance uses.

However, there is a possibility that Parlay interfaces can be combined to provide a more compact set of interfaces. Advantage of this is also extended to cover possibility of enhancing the interfaces’ portability. Contribution N5-010454 from Ericsson/Alcatel proposes this combination.

This report briefly outlines issues surrounding the work required and difficulties encountered if combining Parlay interfaces should go ahead. The following explains interface-by-interface issues ranging in granularity for complexity (category 1 – 4). Note that combination of the interfaces does not either ALL have to be done or not done at all. The combination of some interfaces can go ahead without the combination of others, e.g. those in category 1 would be easy to do.

1. Requires no change

· The following interfaces are easily combined, since they all support the same number of methods with identical set of parameters. Semantically, they also convey the same behaviour.

· The only work required is renaming of interfaces and their associated methods to some common names. Note that the space (represented by ***) is meant to be replaced by a name that is common to both interfaces so that the entity name becomes meaningful to both sides.

· The interfaces as presented are the resultant interfaces after combining.

Trust and security management (INITIAL ACCESS, AND AUTHENTICATION)

1.1
IpInitial – IpFwInitial

<<Interface>>

IpInitial - IpFwInitial

initiateAuthentication (***Domain : in TpAuthDomain, authType : in TpAuthType, fwDomain : out TpAuthDomainRef) : TpResult

1.2
IpAuthentication - IpFwAuthentication

<<Interface>>

IpAuthentication - IpFwAuthentication

requestAccess (accessType : in TpAccessType, ***AccessInterface : in IpInterfaceRef, fwAccessInterface : out IpInterfaceRefRef) : TpResult

1.3
IpAPILevelAuthentication - IpFwAPILevelAuthentication
<<Interface>>

IpAPILevelAuthentication - IpFwAPILevelAuthentication

selectEncryptionMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

Integrity management (HEARTBEAT MANAGEMENT)

1.4
IpAppHeartBeatMgmt - IpSvcHeartBeatMgmt

<<Interface>>

IpAppHeartBeatMgmt - IpSvcHeartBeatMgmt

enable***HeartBeat (duration : in TpDuration, fwInterface : in IpHeartBeatRef, session : in TpSessionID) : TpResult

disable***HeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

1.5
IpHeartBeatMgmt - IpFwHeartBeatMgmt

<<Interface>>

IpHeartBeatMgmt - IpFwHeartBeatMgmt

enableHeartBeat (duration : in TpDuration, ***Interface : in Ip***HeartBeatRef, session : out TpSessionIDRef) : TpResult

disableHeartBeat (session : in TpSessionID) : TpResult

changeTimePeriod (duration : in TpDuration, session : in TpSessionID) : TpResult

1.6
IpAppHeartBeat - IpSvcHeartBeat

<<Interface>>

IpAppHeartBeat - IpSvcHeartBeat

send (session : in TpSessionID) : TpResult

1.7
IpHeartBeat - IpFwHeartBeat

<<Interface>>

IpHeartBeat - IpFwHeartBeat

send (session : in TpSessionID) : TpResult

Integrity management (OAM)

1.8
IpAppOAM - IpSvcOAM

<<Interface>>

IpAppOAM - IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime, clientDateAndTime : out TpDateAndTimeRef) : TpResult

1.9
IpOAM - IpFwOAM
<<Interface>>

IpOAM - IpFwOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime, systemDateAndTime : out TpDateAndTimeRef) : TpResult

Integrity management (EVENT NOTIFICATION)

1.10
IpAppEventNotification - IpSvcEventNotification

<<Interface>>

IpAppEventNotification - IpSvcEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : TpResult

notificationTerminated () : TpResult

1.11
IpEventNotification - IpFwEventNotification

<<Interface>>

IpEventNotification - IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

2. Requires changes

· Combining the following interfaces will require some changes – the proposed solution states what would need to be done for the combining to proceed. (except otherwise stated – a proposed solution may be not to combine at all)

· The interfaces as presented are resultant interfaces after combining, regardless to proposed solution, except otherwise stated.

· Methods particular to an interface are distinguished by underline or dotted line, methods that are common to both interfaces are not marked.

Trust and security management (SERVICE ACCESS)

2.1
IpAccess - IpFwAccess

<<Interface>>

IpAccess - IpFwAccess

obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, ***Interface : in IpInterfaceRef, fwInterface : out IpInterfaceRefRef) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult

selectService (serviceID : in TpServiceID, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

Observations

Both interfaces support 3 common methods with identical signature (obtainInterface, obtainInterfaceWithCallback, and endAccess), whereas IpFwAccess provides a further 3 methods particular to the interface (selectService, signServiceAgreement, and terminateServiceAgreement).

Because service-side objects have no need to have access to certain methods in the combined interface (namely selectService, signServiceAgreement, and terminateServiceAgreement), access to the methods should therefore be controlled by the Framework. The methods and their interface are summarised below.

Interfaces
Methods

IpAccess

selectService

signServiceAgreement

terminateServiceAgreement

Proposed solution

A preferred solution is to separate the methods presented in above table from their current interfaces, and group them under a new interface. For example.

Suggested interface’s name
Methods

IpServiceAgreementManagement

selectService

signServiceAgreement

terminateServiceAgreement

interfaces’ names are open to suggestion

This solution requires a few changes. Firstly, for an application to be able to do selectService(), the application needs to get hold of the new interface IpServiceAgreementManagement. This can be done simply through IpAccess.obtainInterfaceWithCallback(). The implication of this is an additional step introduced to the existing sequence of activity for the application to gain access to SCFs. Secondly, the relevant sequence diagrams need updating accordingly.

FOR:
the solution provides a way to divide the set of interfaces cleanly in accordance with domain uses. Access to methods is explicitly enforced at an interface level.

AGAINST:
entails imbalance on the interface pair
 – while IpAccess interface is common to both sides (used by both an APP and SVC), interface IpServiceAgreementManagement exists only on application side. Essentially there is an interface that both service entities and client applications have access to, and one that only the client applications have access to.

Alternative solutions

1. Another solution is to combine the interfaces with deployment of domain restriction as a means to control access to methods.
 This solution has a distinct advantage exactly opposite to the proposed solution - Balance on overall interfaces is maintained, there will be only one interface as a client to the Framework. But domain restriction places complication on the FW.

2. Alternatively, do not combine the interfaces.

2.2
IpAppAccess - IpSvcAccess

<<Interface>>

IpAppAccess – IpSvcAccess

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult
terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult

Observations

Both interfaces support 1 common method with an identical signature (terminateAccess), whereas IpAppAccess provides a further 2 methods particular to the interface (signServiceAgreement, and terminateServiceAgreement).

Like 2.1, the problem of method access control needs to be resolved. The Framework has no service agreement established with service entities, and therefore does not require an access to methods signServiceAgreement, and terminateServiceAgreement. The table below summarises methods in the problem statement.

Interfaces
Methods

IpAppAccess
signServiceAgreement

terminateServiceAgreement

Proposed solution

Also like solution to 2.1, a preferred option is to separate the two methods and group them into a new interface. This interface would only be used by applications. The following illustrates the proposed interface.

Suggested interface’s name
Methods

Ip***ServiceAgreementManagement

signServiceAgreement

terminateServiceAgreement

interfaces’ names are open to suggestion

If this were to go ahead, a sequence of activity needs updating. The Framework will invoke methods in this new interface on the client side to sign or terminate service agreement. Relevant sequence diagrams need updating accordingly.

FOR:
the solution provides a way to divide the set of interfaces cleanly in accordance with domain uses. Access to methods is explicitly enforced at an interface level.

AGAINST:
entails imbalance to the interface pair – while the IpApp/SvcAccess interface is common to both sides, interface Ip***ServiceAgreementManagement exists only on the application side. Essentially there is an interface the Framework uses for both service entities and client applications, and one that only is used only for client applications.

Alternative solutions

1. Domain restriction is another option – an advantage is balance on the interface pair being maintained. But it requires the service-side entities to actually implement the whole interface.

2. Alternatively, do not combine the interfaces. An advantage is also balance on the interface pair being maintained.

Service Discovery, and Service Registration

2.3
IpServiceDiscovery - IpFwServiceDiscovery

<<Interface>>

IpServiceDiscovery - IpFwServiceDiscovery

listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listSubscribedServices (serviceList : out TpServiceListRef) : TpResult

listRegisteredServices (serviceList : out TpServiceListRef) : TpResult

Observations

Both interfaces support 3 common methods with identical signatures. Each of the interfaces supports an additional method particular to itself, IpServiceDiscovery supports listSubscribedServices, while IpFwServiceDiscovery supports listRegisteredServices.

Despite the commonality of method names on both interfaces, there are differences in semantic. Each of the identically named methods is meant for different purposes when invoked by entities from different domain. Methods on interface IpServiceDiscovery are used by a client application to discover available services for use, methods on interface IpFwServiceDiscovery on the other hand are used by a service provider to query the Framework for services already registered for service management purposes. If the interfaces are to combine, this difference in semantics has to be taken into consideration.

Proposed solution

Although combining the interfaces is possible, a preferred solution in this case is not to combine the interfaces.

FOR:
the problem of semantic difference is no longer an issue. Balance on the interface pair is also maintained.

AGAINST:

Alternative solutions

1. Domain restriction can also be applied – an advantage to this is a balance on the interface pair being maintained, but there is a problem of semantic difference.

2. Another approach is to combine this interface with IpFwServiceRegistration (refer to 2.4 for more details).

2.4
IpFwServiceRegistration

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpServiceRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

Observations

This interface has no matching interface on APP-FW side.

Proposed solution

As the interface has no corresponding interface on the APP-FW side, then this interface is not a candidate for combination.

However, if the combining of the interfaces proceeds, then there is going to be churn on the interfaces, and this could be seen as an opportunity to merge this interface with the IpFwServiceDiscovery interface.

This relates to alternative solution #2, in 2.3. Referring back to the previous service discovery interfaces (2.3), it is perceivable that interface IpFwServiceDiscovery is of a complementing role to IpFwServiceRegistration’s. They support each other to present a set of service administration functionality. The alternative solution given above to combine the two interfaces (IpFwServiceRegistration – IpFwServiceDiscovery) is therefore an option. The combined interface is illustrated below.

<<Interface>>

IpFwServiceDiscovery – IpFwServiceRegistration

(IpServiceAdministration)

listServiceTypes (listTypes : out TpServiceTypeNameListRef) : TpResult

describeServiceType (name : in TpServiceTypeName, serviceTypeDescription : out TpServiceTypeDescriptionRef) : TpResult

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32, serviceList : out TpServiceListRef) : TpResult

listRegisteredServices (serviceList : out TpServiceListRef) : TpResult
registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, serviceID : out TpServiceIDRef) : TpResult

announceServiceAvailability (serviceID : in TpServiceID, serviceFactoryRef : in IpServiceRef) : TpResult

unregisterService (serviceID : in TpServiceID) : TpResult

describeService (serviceID : in TpServiceID, serviceDescription : out TpServiceDescriptionRef) : TpResult

If this were to go ahead, a few changes are needed. Firstly, A more generalised interface name should be given to the combined interface, here, a name IpServiceAdministration is suggested. Secondly, Relevant sequence diagrams require updates.

This solution results in a distinct advantage that methods with similar concern are grouped into one interface. However, this solution results in non-symmetry on interfaces pairs – interface IpServiceAdministration will not have corresponding interface on the application side; IpServiceDiscovery (refer to 2.3) will have no corresponding interface on the service side.

3. Requires changes, based on previous Lucent contributions

· Combining the following interfaces will require quite a few changes. This will be made easier if the interface definitions given in Lucent’s TpSubjectType contribution are used as a base for the changes.

· The proposed solution states what needs to be done if the combining of the interfaces were to go ahead. (except otherwise stated – a proposed solution may be not to combine at all)

· The interfaces as presented are resultant interfaces after combining, regardless to proposed solution, except otherwise stated.

· Methods or parameters particular to an interface are highlighted by underline (or dotted line), methods that are common to both interfaces are not marked.
Integrity management (LOAD MANAGEMENT)

3.1 IpAppLoadManager – IpSvcLoadmanager

<<Interface>>

IpAppLoadManager – IpSvcLoadManager

query***LoadReq (serviceIDs: in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : TpResult

suspendNotification () : TpResult

resumeNotification () : TpResult

Observations

Both interfaces support 6 common methods, 5 of which have the same signatures. IpAppLoadManager.query***LoadReq () however has an additional serviceIDs parameter.
To combine the interfaces above, first the difference between method signatures (query***LoadReq) need to be resolved.

Proposed solution

Lucent has a contribution to eliminate the serviceIDs parameter from IpAppLoadManager.query***LoadReq, as we find its presence unnecessary (refer to N5-010587 for details). This removes the signature conflict, with the result that combining the interfaces require minimal changes.

FOR:

balance on interfaces pair is maintained.

AGAINST:

Alternative solutions

1. Do not combine the interfaces. The solution also benefits from balance on the interfaces pair.

3.2 IpLoadManager – IpFwLoadManager

<<Interface>>

IpLoadManager – IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

query***LoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

query***LoadErr (loadStatisticError : in TpLoadStatisticError) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

 (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : TpResult

registerLoadController (serviceIDs : in TpServiceIDList) : TpResult
 (notifSubject : in TpSubjectType) : TpResult

unregisterLoadController (serviceIDs : in TpServiceIDList) : TpResult
 (notifSubject : in TpSubjectType) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult
 (notifSubject : in TpSubjectType) : TpResult

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult
 (notifSubject : in TpSubjectType) : TpResult

Observations

Both interfaces support the same number of common methods, 3 of which are with identical signature (reportLoad, query***LoadRes, and query***LoadErr).

There are 5 methods that have signature conflict. For such methods on interface IpFwLoadManager, TpSubjectType contribution (refer to N5-010528 for details) allows service instances to explicitly maintain 1-2-1 mapping with client applications. It does this by removing the appIDs parameter from methods on IpFwLoadManager and replacing them with a type indicating whether the method is intended for the APL or for the Framework. For such methods on interface IpLoadManager, such multiplicity relationship does not apply because a client APL can be associated with many service instances at a time. (TpSubjectType is therefore not applicable to interface IpLoadManager).

Proposed solution

A preferred solution is to combine the interfaces. However, there are some difficulties that first need to be resolved.

Because interface IpLoadManager does not require TpSubjectType, there is a conflict with methods signature. Our understanding is that the methods on IpLoadManager require a way to specify the subject of their invocation, for them this includes: the Framework, and a list of service instances. On the other hand, methods on IpFwLoadManager have different requirement, their intended subjects include: the Framework, and an application. While TpSubjectType allows methods on IpLoadManager to specify the Framework, it can not cope with passing a list of service instances across.

To allow methods on IpFwLoadManager to retain its desired capability (maintaining its 1-2-1 mapping between service instances and an APL) and to allow methods on IpLoadManager to be able to pass a list of service instances across, a type that is capable supporting both requirements is needed. Lucent suggests a new type, TpSubject, which is a union type with a tag of TpSubjectType. With TpSubject, all necessary subjects (APP, FW, SVC) can be specified in the methods’ argument.

If introduction of TpSubject type were to go ahead, then

· TpSubjectType type needs to be extended to define also a subject ‘service instance’.

· A contribution to introduce TpSubject type is required.

The result interface after combining is illustrated below.

<<Interface>>

IpLoadManager – IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

query***LoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

query***LoadErr (loadStatisticError : in TpLoadStatisticError) : TpResult

queryLoadReq (querySubject : in TpSubject, timeInterval : in TpTimeInterval) : TpResult

registerLoadController (notifSubject : in TpSubject) : TpResult

unregisterLoadController (notifSubject : in TpSubject : TpResult

suspendNotification (notifSubject : in TpSubject) : TpResult

resumeNotification (notifSubject : in TpSubject) : TpResult

FOR:

balance on the interfaces pair is maintained.

AGAINST:
requires lots of work.

Alternative solutions

1. Do not combine the interfaces – advantages are the balance is maintained, and no work effort required.

4. Requires some changes, based on Lucent contribution, some inconsistency in current specification are discovered
· Combining the following interfaces will require some changes. This will be made easier if the interface definitions given in Lucent’s TpSubjectType contribution are used as a base for the changes.

· The proposed solution states what needs to be done if the combining of the interfaces were to go ahead. (except otherwise stated – a proposed solution may be not to combine at all)

· The interfaces as presented are resultant interfaces after combining, regardless to proposed solution, except otherwise stated.

· Methods or parameters particular to an interface are highlighted by underline (or dotted line), methods that are common to both interfaces are not marked.

Integrity management (FAULT MANAGEMENT)

4.1 IpAppFaultManager – IpSvcFaultManager
<<Interface>>

IpAppFaultManager - IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

appActivityTestReq (activityTestID : in TpActivityTestID) : TpResult

fwFaultReportInd (fault : in TpInterfaceFault) : TpResult

fwFaultRecoveryInd (fault : in TpInterfaceFault) : TpResult

fwUnavailableInd (reason : in TpFwUnavailReason) : TpResult

svcUnavailableInd (serviceId : in TpServiceID, reason : in TpSvcUnavailReason) : TpResult
 () : TpResult

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : TpResult
 (faultStatistics : in TpFaultStatsRecord, recordSubjects : in TpSubjectType) : TpResult

appRemovalInd () : TpResult

Observations

Both interfaces support 7 common methods, 5 of which with identical signatures. The other 2 methods (genFaultStatsRecordRes, and svcUnavailableInd) have different signature particular to each of the interfaces. Method appRemovalInd additionally is particular to interface IpSvcFaultManager.

Proposed solution

A preferred solution in this case is not to combine the interfaces.

FOR:
Complication with implementation is avoided. It can be seen in ‘alternative solutions’ section that if the combining were to go ahead, a number of difficulties are encountered. Balance on the interfaces pair is also maintained.

AGAINST:
the absence of method appRemovalInd on interface IpAppFaultManager remains.

Alternative Solutions

To combine the interfaces, some difficulties need to be resolved. There is no single solution that makes combining the interfaces possible, a combination of approaches to tackle the different parts of the problem is required.

1. Method signature conflict

· svcUnavailableInd – CURRENTLY, NO SOLUTION IS SUGGESTED TO THIS PROBLEM. Both signatures have little in common.

· genFaultStatsRecordRes – this method when invoked on service entities, there is a 1-2-1 mapping applied by TpSubjectType type. When it is invoked on a client application, no such mapping is governed, on the contrary a 1-2-many is required (a list of serviceIDs is passed across). Like the problem encountered in ‘proposed solution’ to 3.2, a solution to this is also a use of TpSubject type. The work required to implement this solution is also the same as one in 3.2.

2. Access to domain-specific method – method appRemovalInd is only applicable when invoked on a client application. Domain restriction can be applied to solve this problem. A drawback with this approach is that the service-side entities need to implement the entire interface.

Solutions to combine the interface results in fair amount of work needed. The signature conflict with method svcUnavailableInd needs further study, as no solution is suggested at this point.

Additional remarks

According to description to method appRemovalInd, it seems that there should be a mirroring method handling the same task on the service side – its absence highlights inconsistency of interfaces interaction, this could possibly be dealt with by an addition of the method to interface IpAppFaultManager (done through a separate contribution). However, if combining were to go ahead, the implication is that appRemovalInd will be implemented by both client applications and service instances, which consequently resolves the inconsistency of interfaces interaction problem stated earlier (providing no domain restriction is employed).

4.2 IpFaultManager – IpFwFaultManager
<<Interface>>

IpFaultManager – IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, ***ID : in Tp***ID) : TpResult

***ActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : TpResult

svcUnavailableInd (serviceID : in TpServiceID) : TpResult

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpserviceIDList) : TpResult
 (timePeriod : in TpTimeInterval, testSubjects : in TpSubjectType) : TpResult

appUnavailableInd () : TpResult

svcRemovalInd (reason : in TpSvcUnavailReason) : TpResult

Observations

Both interfaces support 3 common methods, 2 of which with identical signatures. The other one (genFaultStatsRecordReq) has different signature for each of the interfaces. Interface IpFaultManager has one method particular to itself, while interface IpFwFaultManager has two methods particular to itself.

Proposed solution

A preferred solution in this case is not to combine the interfaces.

FOR:

Complication with implementation is avoided. Balance on the interfaces pair is maintained.

AGAINST:

Alternative solutions

Like 4.1, a combination of approaches are needed to tackle the different parts of the problem to make combining the interfaces possible.

1. The signature conflict of method genFaultStatsRecordReq occurs in a very much the same way of that identified in 4.1’s genFaultStatsRecordRes. This difficulty can also be solved the same way by a use of TpSubject type.

2. Access to domain-specific methods can be dealt with by domain restriction.

Additional remarks

Like observation raised in 4.1, there are methods that exist only on one side of interfaces interaction. svcUnavailableInd can only be invoked by an application, appUnavailableInd and svcRemovalInd can only be invoked by service instances. The interfaces combination highlights inconsistency between the two interfaces, their methods do not have complete matching pair. A contribution can be proposed to resolve this. Otherwise if the interfaces were to combine, all the methods will be implemented that effectively a client to the interface (both client applications, and service instances) can have access to (providing no domain restriction is employed).
Conclusions
The document has illustrated the way in which Parlay interfaces can be combined – some of which are simple and straight forward (category 1), a few require some effort to make the combining possible (category 2), many of them not only require some effort but have to comply with recent changes made to Parlay specification (category 3). There are also those interfaces that are more difficult to combine, because they themselves are subject to changes (category 4).

For each pair of the interfaces to be combined, a range of solutions was given, each of which provides different level of merits and drawbacks. Some of the pairs were suggested not to be combined at all as they, if combined, lead to some difficulties or require large amounts of work.

Overall observations

A point should be made to recognise that there is inconsistency relating to the interfaces architecture if combining overall interfaces is partial. While some of the interfaces are combined (therefore become a group of common interfaces for both client application and service instance), the rest are left separated (IpApp* interfaces Ip*, and IpFw* interfaces IpSvc*). The consequent model would become rather unbalanced in that there would be 3 types of interfaces: one between APP and FW, one between FW and SVC, and one between APP+SVC and FW.

A similar problem of imbalance will also occur if all of the interfaces are combined but with different solutions approaches. Some interfaces are combined, another is combined with the addition of a new interface (e.g. IpServiceAgreementManagement).

It can be seen that while combining parlay interfaces does not suffer a great deal from technical obstacles, it may inevitably lead to deformation of interfaces architecture.

Another important point that deserves attention is that issues outlined in this document base entirely on where the Parlay specification currently stands. Changes made to the specification may affect the solutions and hence level of complexity to combine the interfaces.

� NOTE: balance on interface pair refers to a conceptual view of completeness of interfaces – there is a set of interfaces between a client application and the Framework, there is also corresponding set of interfaces between the Framework and service instances. This distinguishes clearly the role of the application as service consumer, and that of the service instances as service provider. The balance, if maintained, makes the interfaces easier to understand conceptually. If a developer were to implement an interface on one side, (s)he would probably find it more intuitive to discover a mirroring interface on the other side. This notion of advantage will be used throughout the rest of this document.

� Domain restriction refers to a mechanism to allow (or disallow) method invocation based on the domain of the client.

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

PAGE
10

