3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #12, Sophia Antipolis, France, 16 – 19 July 2001
Tdoc N5-010589

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
The meaning of prescribedMethod seems confused
Agenda Item:

Document for:
Approval
Category:
TS
Doc Summary:

Specs involved:
120070-3
Problem

The concept of authentication capabilities seems to be muddled within the specification. The method which is used to select these capabilities has already been renamed to selectEncryptionMethod(), because that is what the method is actually used for. None, RSA512, RSA1024, DES56 and DES128 are the values for

TpAuthCapability. These are methods used for encrypting the challenge and are therefore encryption capabilities, not authentication capabilities. Although RSA can be used as an authentication capability (due to its support for digital signatures) it is not used as such within the framework.

However, there are many places in the specification which state that the prescribedMethod (returned from selectEncryptionMethod) is used to determine how many challenge/response exchanges have to occur. The values for the authentication capabilities do not specify the number of challenge/response exchanges that need to be executed, only the method of encryption for the challenge.

Whether challenge/response exchanges are used for authentication or not is dependent on the method of authentication decided at initiateAuthentication time. The authentication method of P_OSA_AUTHENTICATION is based on CHAP, and can therefore utilise several challenge/response exchanges (until the side initiating the challenge is satisfied that the far side has authenticated correctly).

CHAP authentication is one-way, but mutual authentication (two-way) can be used if the party being authenticated decides to authenticate the other. There is no requirement within CHAP, and therefore should be no requirement within the P_OSA_AUTHENTICATION authentication type, that mutual authentication must be performed.

Proposal

Lucent believes that various sections of the specification need to be updated to remove any confusion over the role of authentication types and authentication capabilities (encryption method). We would also like to remove references to the authentication capabilities and replace them with references to encryption methods to clarify the roles.

The STD for IpAPILevelAuthentication will need to be reworked as it currently shows a failed selectEncryptionMethod resulting in the object moving to the sink state. We don’t feel that the object should automatically move to the sink state just because no matching encryption method could be found in the first invocation of selectEncryptionMethod. There is no reference to this in the text for selectEncryptionMethod. Moving back to the IDLE state would allow the application to re-evaluate its encryption capabilities before either trying again or invoking abortAuthentication (it is assumed that there is a guard timer to hold against the application holding the object indefinitely). Besides which, the exception shown for this case is incorrect in the STD.

Any text referencing one-way or two-way authentication will need to be modified as CHAP (which the authentication method used within IpAPILevelAuthentication is based on) is primarily a one-way protocol which allows for mutual authentication.

Text should be added that states that re-authentication can be requested at any time, by either party, and does not have to be mutual authentication.

Lucent would also like to propose the removal of the prescribedMethod parameter from the authenticate() methods. We feel that this parameter is redundant, as each side is already aware of the prescribedMethod. In fact, the presence of this parameter can interfere with the authentication process, as the entity receiving the authenticate() request needs to check that the prescribedMethod passed as a parameter matches the method returned in the selectEncryptionMethod. If it does not match, then an exception has to be thrown.

Note: In removing this parameter, it was found that there is no use of P_INVALID_AUTH_CAPABILITY. Should this be removed?

The framework overview section at the start of section 4 mentions that the application MUST authenticate the framework. Lucent feels that mutual authentication should not be enforced by the API, and that it should be the client application’s responsibility to decide if it needs to authenticate the framework. As long as the framework has authenticated the application, and therefore trusts it, there seems to be no reason why the framework should deny an application’s requests just because it hasn’t yet tried to authenticate the framework.

Resulting changes

4. Overview of the Framework

This subclause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the diagram below). The description of the Framework in this document separates the interfaces into these two distinct sets: Framework to Application interfaces and Framework to Service interfaces.

[image: image2.bmp]
Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy decision for the application whether it must authenticate the framework or not. It is a policy decision for the framework whether it allows an application to authenticate it before it has completed its authentication of the application.
6.4.2 Initial Access

2:
Select Encryption Method

The Application invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The application provides an indication if authentication succeeded.

5:
The Application and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the Application supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the Application using the authenticate method on the Application's API Level Authentication interface.

6.4.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client application and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The application must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The application calls initiateAuthentication on the OSA Framework Initial interface. This allows the application to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines generic a authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the application to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The application invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the application. The framework then chooses an encryption method based on the encryption capabilities of the application and the Framework. If the application is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the application may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_ACCESS, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_ACCESS is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the application’s APILevelAuthentication interface.
NOTE: At any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

8.1.1 Interface Class IpAppAPILevelAuthentication

Inherits from: IpInterface.
<<Interface>>

IpAppAPILevelAuthentication

authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

authenticate()

This method is used by the framework to authenticate the client application. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface.

Parameters

challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod.
response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().
8.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList, prescribedMethod : out TpEncryptionCapabilityRef) : TpResult

authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

selectEncryptionMethod()

The client application uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client’s authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method)
Parameters

encryptionCaps : in TpEncryptionCapabilityList
This is the means by which the encryption mechanisms supported by the client application are conveyed to the framework.
prescribedMethod : out TpEncryptionCapabilityRef

This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

This method is used by the client application to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the client’s APILevelAuthentication interface.

Parameters

challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().
Raises

TpCommonExceptions, P_ACCESS_DENIED
16.1.3 Interface Class IpFwAPILevelAuthentication

Inherits from: IpFwAuthentication.
Once the service entity has made initial contact with the provider, authentication of the service entity and Framework provider may be required. The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the framework provider to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality. The service entity must authenticate with the framework before it will be able to use any of the other interfaces supported by the framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1. The service entity calls initiateAuthentication on the provider's IpFwInitial interface. This allows the service entity to specify the type of authentication process. This authentication process may be specific to the Framework provider, or to the implementation technology used. The initiateAuthentication operation can be used to designate the specific process, (e.g. CORBA security could be used in a CORBA-based implementation of OSA). OSA defines a generic authentication interface (IpFwAPILevelAuthentication), which can be used to perform the authentication process. The initiateAuthentication operation allows the service entity to pass a reference to its IpSvcAPILevelAuthentication interface to the Framework, and receive a reference to the IpFwAPILevelAuthentication interface supported by the framework, in return.

2. The service entity invokes the selectEncryptionMethod on the framework's IpFwAPILevelAuthentication interface. This includes the encryption capabilities of the service entity. The framework then chooses an encryption method based on the encryption capabilities of the service entity and the framework. If the service entity is capable of handling more than one encryption method, then the framework chooses one option, the prescribedMethod. In some instances, the encryption capability of the service entity may not fulfil the demands of the framework, in which case, the authentication will fail.
3. The service entity and framework interact to authenticate each other. For an authentication type of P_OSA_ACCESS, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate operation on the IpFwAPILevelAuthentication interface. P_OSA_ACCESS is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the service entity’s APILevelAuthentication interface.
NOTE: At any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

<<Interface>>

IpFwAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList, prescribedMethod : out TpEncryptionCapabilityRef) : TpResult

authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

selectEncryptionMethod()

The service entity uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within the capability of the service entity. If a mechanism that is both acceptable to the framework and within the capability of the service entity cannot be found, then the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the service entity’s authenticate() method (the wait is to ensure that the service entity can initialise any resources necessary to use the prescribed encryption method)

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the service entity are conveyed to the framework.
prescribedMethod : out TpEncryptionCapabilityRef

This is the mechanism preferred by the framework for the encryption process. If the service entity does not understand the value of the prescribedMethod returned by the framework, it is considered a catastrophic error and the service entity must abort the authentication process.
Raises

TpCommonExceptions, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

The service entity uses this method to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the service entity. The serviceID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the service entity (the key management system is currently outside of the scope of the OSA API specification). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the service entity’s APILevelAuthentication interface.

Parameters

challenge : in TpString

The challenge presented by the service entity to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
response : out TpStringRef

This is the response of the framework to the challenge of the service entity in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by the selectEncryptionMethod() method.
Raises

TpCommonExceptions
16.1.5 Interface Class IpSvcAPILevelAuthentication

Inherits from: IpInterface.
<<Interface>>

IpSvcAPILevelAuthentication

authenticate (challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult

Method

authenticate()

The framework uses this method to authenticate the service entity. The challenge will be encrypted using the mechanism prescribed in selectEncryptionMethod. The service entity must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the service entity on the IpFWAPILevelAuthentication interface.
Parameters

challenge : in TpString

The challenge presented by the framework to be responded to by the service entity. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
response : out TpStringRef

This is the response of the service entity to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().
Raises

TpCommonExceptions
9.1.2 State Transition Diagrams for IpAPILevelAuthentication

[image: image3.emf]Idle

SelectingMethod

AuthenticatingClient

All

States

IpInitial.initiateAuthentication

selectEncryptionMethod

requestAccess ^P_ACCESS_DENIED

requestAccess ^P_ACCESS_DENIED

requestAccess ^P_ACCESS_DENIED

ClientAuthenticated

authenticate result(VALID)[AuthIncomplete] ^client.authenticate

requestAccess / new IpAccess

authenticate / "Buffer request"

"re-authenticate" ^client.authenticate

result(INVALID)

authenticate result(VALID)[AuthComplete] / "Process authenticate

requests"

 ^client.authenticationSucceeded

"found method" / return prescribedMethod ^client.authenticate

"no method found" ^P_NO_ACCEPTABLE_AUTH_CAPABILITY

Figure : State Transition Diagram for IpAPILevelAuthentication

4.1.1.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking SelectEncryptionMethod.
4.1.1.2 SelectingMethod State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It is a policy of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not. In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception is thrown and the Authentication object moves back to the IDLE state The client can now revisit its list of supported capabilities to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke abortAuthentication.
4.1.1.3 AuthenticatingClient State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework will either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state ClientAuthenticated is made, the client is informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered authenticate requests. In case the response is not valid, the Authentication object is destroyed. This implicates that the client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
4.1.1.4 ClientAuthenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.
19.3.3 TpEncryptionCapability
This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined .

String Value
Description

NULL
An empty (NULL) string indicates no client capabilities.

P_DES_56
A simple transfer of secret information that is shared between the client application and the framework with protection against interception on the link provided by the DES algorithm with a 56bit shared secret key

P_DES_128
A simple transfer of secret information that is shared between the client entity and the framework with protection against interception on the link provided by the DES algorithm with a 128bit shared secret key

P_RSA_512
A public-key cryptography system providing authentication without prior exchange of secrets using 512 bit keys

P_RSA_1024
A public-key cryptography system providing authentication without prior exchange of secrets using 1024bit keys

19.3.4 TpEncryptionCapabilityList
This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma (,)as the separation character.

5 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name
Description

P_ACCESS_DENIED
The client is not currently authenticated with the framework

P_APPLICATION_NOT_ACTIVATED
An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

P_DUPLICATE_PROPERTY_NAME
A dupilcate property name has been received

P_ILLEGAL_SERVICE_ID
Illegal Service ID

P_ILLEGAL_SERVICE_TYPE
Illegal Service Type

P_INVALID_ACCESS_TYPE
The framework does not support the type of access interface requested by the client.

P_INVALID_ACTIVITY_TEST_ID
ID does not correspond to a valid activity test request

P_INVALID_AGREEMENT_TEXT
Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY
Invalid encryption capability

P_INVALID_AUTH_TYPE
Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID
Invalid Client Application ID

P_INVALID_DOMAIN_ID
Invalid client ID

P_INVALID_ENT_OP_ID
Invalid Enterprise Operator ID

P_INVALID_PROPERTY
The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID
Invalid Subscription Assignment Group ID

P_INVALID_SERVICE_CONTRACT_ID
Invalid Service Contract ID

P_INVALID_SERVICE_ID
Invalid service ID

P_INVALID_SERVICE_PROFILE_ID
Invalid service profile ID

P_INVALID_SERVICE_TOKEN
The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE
Invalid Service Type

P_INVALID_SIGNATURE
Invalid digital signature

P_INVALID_SIGNING_ALGORITHM
Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY
Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
An encryption mechanism, which is acceptable to the framework, is not supported by the client

P_PROPERTY_TYPE_MISMATCH
Property Type Mismatch

P_SERVICE_ACCESS_DENIED
The client application is not allowed to access this service.

P_SERVICE_ACCESS_TYPE
The framework does not support the type of access interface requested by the client.

P_SERVICE_NOT_ENABLED
The service ID does not correspond to a service that has been enabled

P_UNKNOWN_SERVICE_ID
Unknown Sevice ID

P_UNKNOWN_SERVICE_TYPE
Unknown Service Type

Registered Services

 UI

Mobility

Control

Call

Framework

Client Application

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

