3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12, Sophia Antipolis, France, 16 – 19 July 2001
Tdoc N5-010577

Source:
Lucent
· Andy Bennett (andybennett@lucent.com)

· Gareth Carroll (garethcarroll@lucent.com)

· Tip Apaseesod (ta39@lucent.com)
Title:
Contribution on Service Instance Lifecycle Management
Agenda Item:
(Was N5-010384 at Meeting #11)
Document for:
Approval
Category:
TS
Doc Summary:

Specs involved:
120070-3
Current Situation

A service instance is brought into existence when the Application invokes signServiceAgreement on the Framework. The Framework uses a Service Factory to create the instance, and a reference to it is returned to the Application.

It could be considered then that a Session between the Application and Service instance has been started.

This Session is considered to be ended under the following conditions :-

1. The Application invokes IpAccess.terminateServiceAgreement()

2. The Application invokes IpFaultManager.svcUnavailableInd()

3. The Service instance invokes IpFwFaultManager.appUnavailableInd()

4. The Service instance invokes IpFwFaultManager.svcRemovalInd()

5. The Framework invokes IpSvcFaultManager.svcUnavailableInd() – as a result of item 2 above

6. The Framework invokes IpSvcFaultManager.appRemovalInd() – possibly as a result of item 2 above

(If the service instance invokes either of the above IpFwFaultManager methods the Framework needs to pass that information on to the application, which can then decide whether to end the service agreement or not. Currently, the IpAppFaultManager interface is lacking an appRemovalInd method so this cannot be done. Likewise, the IpFaultManager is lacking a svcUnavailableInd which the application could invoke to inform the framework that it is having trouble with the service.)

Issue

There is currently no method that the Framework can invoke on the Service instance to indicate that the Session has been terminated unless the Service implements the IpSvcFaultManager interface. Even if that interface is supported the Framework shouldn’t be using those methods if, for example, the Service Agreement should be terminated because the contract governing its terms expires. There needs to be a method that the framework can invoke to terminate the service instance.

Proposal

We propose that a new interface, IpServiceInstanceLifecycleManager, is introduced. This interface must be implemented by each Service and a reference to it provided to the Framework. This implies that the reference must be passed in the IpServiceFactory’s createServiceManager method’s out parameter.

One method, destroy(), is defined for this new interface.

When an Application wants to end the session it has with a Service it invokes terminateServiceAgreement() on the Framework’s IpAccess interface and the Framework will invoke destroy() on the Service instance’s lifecycle manager.

One scenario is missing from the description above – what happens when the Application invokes svcUnavailableInd() on the Framework’s IpFaultManager interface but the Service doesn’t implement the IpSvcFaultManager interface, or hasn’t provided a reference to it? The svcUnavailableInd() method is supposed to result in the ending of the session and, by implication, the removal of the Service Manager.

The answer is now that destroy() would be invoked.

Resultant Changes

· New IpServiceInstanceLifecycleManager interface

· Updated IpSvcFactory interface

· New TpServiceInterfaces type

0.0.0 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to inform a Service Instance that the session with the Application is over and that the Instance should destroy itself.

<<Interface>>

IpServiceInstanceLifecycleManager

destroy () : TpResult

Method

destroy()

Parameters

None identified for this method.

Raises

TpCommonExceptions

16.3.1 Interface Class IpSvcFactory

Inherits from: IpInterface.
The IpSvcFactory interface allows the framework to get access to a service manager interface and Lifecycle Manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

<<Interface>>

IpSvcFactory

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInterfaces : out TpServiceInterfacesRef) : TpResult

Method

createServiceManager()

This method returns a service manager interface and Lifecycle Manager reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement. If the Framework doesn’t receive a LifecycleManager reference it will not pass the Service Manager interface reference to the application. It will also cause the Service to go into the unannounced state.
Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInterfaces : out TpServiceInterfacesRef

Specifies the service manager interface and Lifecycle Manager references for the specified application ID.
Raises

TpGeneralException,TpFWException
0.0.1 TpServiceInterfaces

This is a Sequence of Data Elements containing a reference to the SCF manager interface of the SCF and a reference to the Lifecycle Manager interface of the SCF.

Sequence Element Name
Sequence Element Type

ServiceMgrInterface
IpServiceRef

LifecycleMgrInterface
IpServiceInstanceLifecycleManagerRef

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

