3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #12, Sophia Antipolis, France, 16 – 19 July 2001
Tdoc N5-010526

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Replacement of register/unregisterLoadController
Agenda Item:
(Was N5-010365 at Meeting #11)
Document for:
Approval
Category:
TS
Doc Summary:
Proposed to replace registerLoadController() and unregisterLoadController() with notification methods
Specs involved:
DTS/SPAN-120070-4
Proposal

The IpLoadManager and IpFwLoadManager interfaces contain methods called registerLoadController and unregisterLoadController. When the description of these methods is looked at, it can be seen that these methods are concerned with the creation and destruction of requests for load control change notifications. Lucent proposes to rename these methods as createLoadLevelNotification and destroyLoadLevelNotification, following a naming convention set for notifications for FW event notification and also for call control.

Resultant Changes

The effect of this proposal is to change two interfaces, along with the associated documentation. The two interfaces are IpLoadManager and IpFwLoadManager.

As a result of these changes, and also the introduction of loadLevelNotification in a previous meeting, the sequence diagram 6.2.5 and the State Transition Diagram in 9.3.3 are changed, whilst the LoadManagerInternal diagram in 9.3.4 is to be removed. The FW->SVC side version of 6.2.5 should be added, along with a FW->SVC side of 9.3.3.

Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController createLoadLevelNotification(serviceIDs : in TpServiceIDList) : TpResult

unregisterLoadController destroyLoadLevelNotification(serviceIDs : in TpServiceIDList) : TpResult

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult

Method

RegisterLoadControllercreateLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the serviceIDs is null.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID
Method

unregisterLoadControllerdestroyLoadLevelNotification()

The client application uses this method to remove its request for notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID

Interface Class IpFwLoadManager

Inherits from: IpInterface.
<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (appIDs : in TpClientAppIDList, timeInterval : in TpTimeInterval) : TpResult

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : TpResult

registerLoadController createLoadLevelNotification(appIDs : in TpClientAppIDList) : TpResult

unregisterLoadController destroyLoadLevelNotification(appIDs : in TpClientAppIDList) : TpResult

suspendNotification (appIDs : in TpClientAppIDList) : TpResult

resumeNotification (appIDs : in TpClientAppIDList) : TpResult

Method

registerLoadControllercreateLoadLevelNotification()

The service uses this method to register to receive notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should be reported. The framework is designated by a null value.
Raises

TpCommonExceptions
Method

UnregisterLoadControllerdestroyLoadLevelNotification()

The service uses this method to remove its request for notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpCommonExceptions

6.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image1.wmf] :

IpAppLoadManager

 :

IpLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

3:

loadLevelNotification

()

2: load change detection & policy evaluation

This is the

implementation detail

5:

loadLevelNotification

()

6:

destroyLoadLevelNotification

()

4: load change detection & policy evaluation

This is the

implementation detail

Figure 1
9.3.3 State Transition Diagram for IpLoadManager

[image: image2.wmf]Idle

NOTIFICATION

SUSPENDED

ACTIVE

IpAccess.obtainInterface

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

IpAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpAccess.endAccess

queryLoadReq

“

load

change”^loadLevelNotification

Figure 2
IDLE

In this state the application has obtained an interface reference to the IpLoadManager from the IpAccess interface.

ACTIVE

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager. The load manager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
NOTIFICATION SUSPENDED

Due to, e.g. a temporary load condition, the application has requested the load manager to suspend sending the load level notification information.

9.3.4 State Transition Diagrams for IpLoadManagerInternal

This section is to be removed.

Add XXX Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy.

[image: image3.wmf] :

IpSvcLoadManager

 :

IpFwLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

3:

loadLevelNotification

()

2: load change detection & policy evaluation

This is the

implementation detail

5:

loadLevelNotification

()

6:

destroyLoadLevelNotification

()

4: load change detection & policy evaluation

This is the

implementation detail

Figure 3
Add XXX State Transition Diagram for IpFwLoadManager

[image: image4.wmf]Idle

NOTIFICATION

SUSPENDED

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

IpFwAccess.obtainInterfaceWithCallba

ck

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

queryLoadReq

“

load

change”^loadLevelNotification

Figure 4
IDLE

In this state the service has obtained an interface reference to the IpFwLoadManager from the IpFwAccess interface.

ACTIVE

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
NOTIFICATION SUSPENDED

Due to, e.g. a temporary load condition, the service has requested the load manager to suspend sending the load level notification information.

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

_1049874996.doc

 : IpAppLoadManager

 : IpLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

3: loadLevelNotification()

2: load change detection & policy evaluation

This is the

implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

4: load change detection & policy evaluation

This is the

implementation detail

_1050241342.doc

 : IpSvcLoadManager

 : IpFwLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

3: loadLevelNotification()

2: load change detection & policy evaluation

This is the

implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

4: load change detection & policy evaluation

This is the

implementation detail

_1050241625.doc

Idle

NOTIFICATION

SUSPENDED

“load change”^loadLevelNotification

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

queryLoadReq

IpFwAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

_1049873435.doc

Idle

NOTIFICATION

SUSPENDED

“load change”^loadLevelNotification

ACTIVE

IpAccess.obtainInterface

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

queryLoadReq

IpAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpAccess.endAccess

