PAGE
1

	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001
	N5-010522

Source:
Ericsson

Title:
MPCC service sequence Diagrams
Agenda Item:
Call Control
Document for:
Decision/Approval

Category:
TS
Work Item ID:

Doc Summary:

Specs involved:
DES/SPAN - 120070-4 V0.0.6 (2001)
Introduction

This contribution proposes additional sequence diagrams for MPCC and to add/modify
existing text in chapter 7 for Multi Party Call Control.

PROPOSAL

The proposed changes to 120070-4 (Draft ES 201 915-4) in this document are:

1) Modifications to the text handling the scope for MPCC Service text in chapter 7 and
 add text to the “application Initiated call setup” in chapter 7.1 to cater for a *
 possible extension to a 3-party call service.

2) New message sequence diagrams for
 a) Call Information Collect service (new chapter 7.4.4)
 b) Hot-line service (new chapter 7.4.5)
 c) Call Forwarding on Busy service (new chapter 7.4.6)

Proposed Modifications to chapter 7 and 7.1
7 MultiParty Call Control Service

The Multi-Party Call Control API relies on the Intelligent Networks and CAMEL Service Environment (CSE), but is not restricted to that. . The underlying network is assumed to be based on CAMEL phase 3 or in other cases on IN CS2 (or IN CS3). The IN CS2 is used for the cases where there are more than 2 parties in the call and leg based operations and furthermore for application initiated calls. . The detailed description of the supported methods is given in the chapter 7.5.

In some of the sequence diagrams the SCS is included to indicate a relationship with the underlaying network by indicating the network events involved. The MPCC API relationship with SCS is implementation specific. However, as an underlying IN network only allows visibility on either the Originating BCSM (Basic Call State Model) or the Terminating BCSM, it is assumed that the Call object will be responsible for coordination with the IN/CAP protocol and the call legs in the call.
 The SCS is assumed to exist. Its representation in the sequence diagrams is not intended to imply any specific implementation.
7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call. On answer from party A, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer from party B the announcement is cancelled and party B is routed to the call.
The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.
The event that causes this to happen could for example be the report of answer event from B-party or controlled by the A-party by entering a service code (mid-call event).
The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to 17 in the sequence diagram).
Proposed New Message Sequence Charts:
7.4.4 Call Information Collect service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The service may apply to ordinary two-party calls, but could also include a number translation of the dialed number and special charging (e.g. a premium rate service) .

Additional call leg related information is requested with the getInfoReq and superviseReq methods.
The answer and call release events are in this service example requested to be reported in notify mode and
additional call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate the information that can be collected and sent to the application at the end of the call.
Furthermore is shows the order in which information is sent to the application: network release event followed by possible requested call leg information, then the destroy of the call leg object (callLegEnded) and finally the destroy of the call object (callEnded).

[image: image1.wmf]�

AppLegB

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegA

�

LegB

�

SCS

�

AppLogic

�

5: "forward event"

�

state transition to 'Active'

�

 "continue call processing"

�

"20: disconnect from A-party

�

 "inform call object"

�

18: eventReportRes()

�

6: "new"

�

14: eventReportReq()

�

7: "new"

�

8: createCallLeg

�

 "new"

�

9: eventReportReq()

�

13: routeReq()

�

"inform call object"

�

16: continueProcessing()

�

 "inform call object"

�

state transition to "Idle"

�

19: "forward event"

�

 "inform call object"

�

36: "callEnded"

�

3: trigger event: "analysed information"

�

1: "new"

�

2: createNotification

�

"arm trigger"

�

25: callLegEnded()

�

24: "forward event"

�

"17:"B-party answer"

�

34: callLegEnded

�

26: "forward event"

�

22: "forward event"

�

state transition to "Releasing"

�

"check if application interested"

�

4: reportNotification (ADDRESS_ANALYSED)

�

"new()"

�

state transition to "Active"

�

"new()"

�

10: superviseReq

�

11: getInfoReq()

�

12: setChargePlan

�

15: getInfoReq()

�

state transition to "Releasing"

�

23: getInfoRes()

�

21: eventReportRes()

�

27:"B-party disconnected"

�

28:eventReportRes()

�

29: "forward event"

�

30: getInfoRes()

�

32: superviseRes

�

31: "forward event"

�

33: "forward event"

�

35: "forward event"

�

37: "forward event"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (“analysed information”) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

4:This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLeg is created to receive callbacks for another leg..

8: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

9: The application requests to be notified when party B answers the call and when the leg to B-party is released.

10. The application requests to supervise the call leg to party B

11. The application requests information associated with the call leg to party b for example to calculate charging.

12. The application requests a specific charge plan to be set for the call leg to party B.

13: The application requests to route the terminating leg to reach the associated party B.

14: The application requests to be notified when the leg to A-party is released.

15. The application requests to supervise the call leg to party A.

16: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the associated party B.

17: When the B-party answers the call, the termination call leg is notified.

18:Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object.

19.This answer message is then forwarded to the object implementing the IpAppLogic interface.

20: When the A-party releases the call, the originating call leg is notified and makes a transition to “releasing state”.

21: The application IpAppLegA is notified, as the release event has been requested to be reported in Notify mode..

22: The event is forwarded to the application logic.

23: The supervised call leg information is reported.

24: The event is forwarded to the application logic.

25: The origination call leg is destroyed, the AppLegA is notified

26: The event is forwarded to the application logic.

27: When the B-party releases the call or the call is released as a result of the release request from party A, the terminating call leg is notified and makes a transition to “releasing state”.

28: assuming a release request from party B has been received, the application IpAppLegB is notified, as the release event from party B has been requested to be reported in Notify mode.
Note: no report is sent if the release is caused by propagation of the release from party A.

29: The event is forwarded to the application logic.

30: The supervised call leg information is reported.

31: The event is forwarded to the application logic.

32: The supervised call leg information is reported.

33: The event is forwarded to the application logic.

34: The terminating call leg is destroyed, the AppLegB is notified

35: The event is forwarded to the application logic.

36: When the originating call leg is destroyed, the AppLeg1 is notified

37: Assuming the IpCall object has been informed that the legs have been destroyed, the the IpAppMultiPartyCall is notified that the call is ended .

38: The event is forwarded to the application logic.

7.4.5 Hot-Line service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination party.
The call release is monitored to enable the sending of information to the application at call release, e.g. for charging purposes.

Note: This service could be extended as follows:
Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.
This scenario is handled in 7.4.3.

[image: image2.wmf]�

AppLegB

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegA

�

LegB

�

SCS

�

AppLogic

�

"check if application interested"

�

state transition to "Initiating"

�

4: reportNotification (CALL_ATTEMPT_AUTHORIZED(originating))

�

"new()"

�

"new()"

�

5: "forward event"

�

state transition to 'Active'

�

13: event: "address_analysed"

�

"continue call processing"

�

"14: disconnect from B-party

�

 "inform call object"

�

15: eventReportRes()

�

6: "new"

�

11: eventReportReq()

�

7: "new"

�

8: createCallLeg

�

 "new"

�

9: eventReportReq()

�

10: routeReq()

�

"inform call object"

�

12: continueProcessing()

�

 "inform call object"

�

state transition to "Idle"

�

state transition to "Active"

�

16: "forward event"

�

 "inform call object"

�

22: "callEnded"

�

3: trigger event: "originating call attempt authorized"

�

1: "new"

�

2: createNotification

�

"arm trigger"

�

state transition to "Releasing"

�

17: callLegEnded

�

18: "forward event"

�

"19: A-Party disconnected"

�

20: callLegEnded

�

21: "forward event"

�

23: "forward event"

�

state transition to "Releasing"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (originating call attempt” is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.

4:This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLegB is created to receive callbacks for another leg..

8: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

9: The application requests to be notified when the leg to party B is released.

10: The application requests to route the terminating leg to reach the associated party as specified by the application (“hot-line number”).

11: The application requests to be notified when the leg to party A is released.

12: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the associated party as specified by the application (E.164 number provided by application)

13: The originating call leg is notified that the number (provided by application) has been analysed by the network and the originating call leg STD makes a transition to “active” state. The application is not notified as it has not requested this event to be reported.

14: When the B-party releases the call, the terminating call leg is notified and makes a transition to “Releasing state”.

15: The application is notified, as the release event has been requested to be reported in Notify mode..

16: The event is forwarded to the application logic.

17: When the terminating call leg is destroyed, the AppLegB is notified

18: The event is forwarded to the application logic.

19: When the call release is propagated in the network toward the party A, the originating call leg is notified and makes a transition to “releasing state”. This release event (propagated from party B) is not reported to the application.

20: When the originating call leg is destroyed, the AppLegA is notified

21: The event is forwarded to the application logic.

22: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

23: The event is forwarded to the application logic.

7.4.6 Call Forwarding on Busy service

The following sequence diagram shows an application establishing a call forwarding on busy.
When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system.

[image: image3.wmf]�

AppLegC

�

AppLegA

�

AppCall

�

AppCCM

�

CCM

�

Call

�

LegC

�

LegA

�

LegB

�

SCS

�

AppLogic

�

state transition to "Active"

�

state transition to "Releasing"

�

"continue call processing"

�

"new"

�

"new"

�

"check if application interested"

�

"new"

�

"inform call object"

�

state transition to "Idle"

�

10: eventReportReq()

�

11: routeReq()

�

state transition to "Active"

�

1: "new"

�

 2:createNotification()

�

 "arm trigger"

�

 3: trigger event: "busy"

�

4:reportNotification(RELEASE(busy))

�

5: "forward event"

�

6: "new"

�

7: "new"

�

9: createCallLeg

�

"new"

�

12: deassign()

�

13: continueProcessing()

�

"inform call object"

�

8: "new"

�

14: C-Party answer"

�

15: eventReportRes()

�

16: "forward event"

1:This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:This message is sent by the application to enable notifications on new call events.

3: When a new call, that matches the event criteria, arrives a message (“busy”) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

4:This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

7: A new AppCallLegA is created to receive callbacks for another leg..

8: A new AppCallLegC is created to receive callbacks for another leg..

9: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

10: The application requests to be notified when party C answers the call..

11: The application requests to route the terminating leg to reach the associated party C.

12: The application requests to deassign the old leg to party B. When the terminating call leg is destroyed, the AppLegB is notified abd the event is forwarded to the application logic (not shown).

13: The application requests to resume call processing for the originating call leg.
 As a result call processing is resumed in the network that will try to reach the associated party B.

14: When the party C answers the call, the termination call leg is notified.

15:Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call being answered back to its callback object.

16.This answer message is then forwarded to the object implementing the IpAppLogic interface.

� Contact information: Jørgen Dyst, L.M.Ericsson A/S, Denmark, tel: +45 33 88 33 25, e-mail: Jorgen.Dyst@lmd.ericsson.se

