Page 1
Draft prETS 300 ???: Month YYYY

Page 19

	3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001
	N5-010521

Source:
Ericsson

Title:
Introduction of Call LEG STDs and action tables
Agenda Item:
Call Control
Document for:
Approval
Category:
TS
Work Item ID:
OSA
Doc Summary:

Specs involved:
DES/SPAN - 120070-4 V0.0.6 (2001)
Introduction

During the last meeting in San Diego the new Originating Call Leg STD and Terminating Call Leg STDs were in principle agreed for MPCC. This contribution aims to complete the Call Leg STDs including state descriptions and updated action tables for allowed methods in order to integrate them in the OSA API specification for MPCC.

Proposal

Changes proposed to the original call Leg STDs resulting from the Call Leg STD drafting session in San Diego (provided by Ultan):

There has been a proposal that the name of the connectionEnded method should be changed to callLegEnded. The rationale being that the destroy of the call leg object may not necessary imply that the connection in the network is released. This contribution assumes that the proposal for this method name change is accepted. If not, the method name in the proposed text and STDs should be corrected.

Originating Call Leg STD:

· Correct getMoreDialedDigits into getMoreDialledDigitsReq

· Added support for setMedia in the state ANALYSING

· Added ‘collected_address’ event report within state “Analysing”

· Rename ‘mid-call event’ into ‘service_code’

· Added support for ‘service code’ as a trigger in state Active

· Added NOTE in STD that update of state model due to network events
 is independent of the monitor mode.

· Added State description for each state of the Leg STD

· Added updated overview table for allowed methods

Terminating Call Leg STD:

· Added support for event ‘CallAttemptAuthorized’ in state Active

· Added support for ‘queued’ event report in state Active

· Added support for ‘redirected’ event report in state Active

· Rename ‘mid-call event’ into ‘service_code’

· Added support for ‘service code’ as a trigger in state Active

· Added support for ‘redirected’ as a trigger in state Active

· Added support for ‘queued’ as a trigger in state Active

· Added NOTE in STD that update of state model due to network events
 is independent of the monitor mode.

· Added State description for each state of the Leg STD

· Added updated overview table for allowed methods

Detailed Changes
120070_4_v006
7.4.2 State Transition Diagram for IpMultiPartyCall

…

7.4.2.5 Overview of allowed methods

	Methods applicable
	Call Control Call State
	Call Control Manager State
	

	getCallLegs,

	Idle, Active, Released
	-
	

	createCallLeg,

createAndRouteCallLegReq, setAdviceOfCharge, superviseReq,
	Idle, Active
	Active
	

	Release
	Active
	Active
	

	Deassign
	Idle, Active
	-
	

	GetInfoReq
	Idle
	Active
	

	SetChargePlan
	Idle, Active
	Active
	

7.4.3 State Transition Diagrams for IpCallLeg

 The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams. One for the originating call leg and one for the terminating call leg.

Call Leg State Model General Objectives:

1 Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2 Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg model.

3 States are as seen from the application: if there is no change in the methods an application is permitted to apply on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on terminating leg do not change state.

4 The application is to send a request to continue processing (using an appropriate method like continueProcessing, routeReq) for each leg and event reported in monitor mode ‘intercept’. The call processing is resumed in the network when no leg in the call is left suspended.
5 In case on a leg more than one network event (for example mid-call event ‘service_code’) is to be reported to the application at quasi the same time, then the events are to be reported one by oneto the application in the order received from the network. When for a leg an event is reported in intercept mode, a next pending event is not to be reported to the application until a request to resume call processing for the current reported event has been received on the leg.
 NOTE: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in the P_CALL_MONITOR_MODE_INTERRUPT.

7.4.3.1 Originating Call Leg
[image: image1.wmf]�

Initiating

�

Analysing

�

Active

�

Releasing

�

do/ send reports if requested, or error reports if required

�

Originating Call Leg.

�

Transitions/events not shown:

�

All states:

�

continueProcessing, getLastRedirectedAddress, getCall: no state change

�

All states except Releasing:

�

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq,

�

setChargePlan

�

NOTE: The update of the state model is made irrespectively of the event

�

monitor mode, .i.e. independent of if the network events indicated as

�

[armed] have been requested by the application or not.

�

All States

�

'call attempt authorized'[armed]

�

^IpAppCallLeg.eventReportRes

�

setMedia

�

IpAppMultiPartyCallControlManager.

�

reportNotification(callAttempt)

�

IpAppMultiPartyCallControlManager.

�

reportNotification(callAttemptAuthorized)

�

getMoreDialledDigitsReq

�

'Address Collected'[armed]

�

^IpAppCallLeg.eventReportRes

�

IpAppMultiPartyCallControlManager.

�

reportNotification(address_collected)

�

setMedia

�

getMedia

�

'service_code'[armed]

�

^IpAppCallLeg.eventReportRes

�

'Address Analysed'[armed]

�

^IpAppCallLeg.eventReportRes

�

IpAppMultiPartyCallControlManager.

�

reportNotification(address_analysed)

�

network release[armed]

�

^IpAppCallLeg.eventReportRes

�

networkRelease[armed]

�

^IpAppCallLeg.eventReportRes

�

network release[armed]

�

^IpAppCallLeg.eventReportRes

�

IpAppMultiPartyCallControlManager.

�

reportNotification(release)

�

release

�

'timer expiry'

�

deasign

�

 ^IpAppCallLeg.callLegEnded

�

setMedia

�

'Address_Collected[armed]

�

 ÎpAppCallLeg.eventReportRes

�

 IpAppMultiPartyCallControlManager.

�

reportNotification(service_code)

Figure : Application view on the Originating CallLeg object

7.4.3.1.1 Initiating

Entry events:

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Call_Attempt” trigger criterion.
-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Call_Attempt_Authorised” trigger criterion.
Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination) party with the given properties, e.g. based on the originating party’s identity and service profile.
The setup of the connection for the party has been initiated and the application activity timer is being provided.

In this state the following functions are applicable:

· The detection of a “Call_Attempt” trigger criterion.
· The detection of an “Call_Attempt_Authorised” trigger criterion as a result that the call attempt authorisation is successful.
-
The report of the “Call_Attempt_Authorised” event indication whereby the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

-
The receipt of destination address information, i.e. initial information package/dialling string as received from calling party.

-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

· Availability of destination address information, i.e. the initial information package/dialling string received from the calling party.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period.
-
Receipt of a deassign() method.

· Receipt of a release() method.
· Detection of a “release” indication as a result of a premature disconnect from the calling party.
7.4.3.1.2 Analysing
Entry events:

-
Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial information package/dialling string from the calling party.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Address_Collected” trigger criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.
The received information (dialled address string from the calling party) is being collected and examined in accordance to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be collected. Upon completion of address collection the address is analysed.
The address analysis is being made according to the dialling plan in force to determine the routing address of the call leg connection and the connection type (e.g. local, transit, gateway).

In this state the following functions are applicable:

-
The detection of a Address_Collected trigger criterion.

-
On receipt of the “Address_Collected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.
· Receipt of a getMoreDialledDigitsReq() method in order to collect a variable number of digits.
-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq() method.

Exit events:

-
Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Receipt of a deassign() method.

· Receipt of a release() method.
-
Detection of a “release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.3 Active
Entry events:

-
Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Address_Analysed trigger criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

In this state the following functions are applicable:

-
The detection of a Address_Analysed trigger criterion.

-
On receipt of the “Address_Analysed” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.
-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· In this state the routing information is interpreted, the authority of the calling party to establish this connection is verified and the call leg connection is set up to the remote party.
· -
In this state a connection to the call party is established.
-
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY ???is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then this is not a valid event (that event is not notified) and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.

-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

-
Detection of an “release” indication as a result of a disconnect from the calling and called party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

7.4.3.1.4 Releasing
Entry events:

-
Detection of an “Release” indication as a result of the network release initiated by one of the parties of the call leg connection.

-
Sending of the release() method by the application.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Release” trigger criterion.
-
A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from the application have been received during a certain period (timer expiry).
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) the network release event handling is performed.
ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested reports.

In this state the following functions are applicable:

· The detection of a “Release” trigger criterion..
-
On receipt of the “Release” indication the following functions are performed:

-
The network release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_RELEASE then no monitoring is performed.

· Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

· The callLegEnded() method is sent to the application after all information has been sent. In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application will also be informed that the connection has ended

-
In case of abnormal termination due to a fault and the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed (callLegEnded).
Note: the call in the network may continue or be released, depending e.g. on the call state.
Exit events:

-
In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method.

-
Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method .

7.4.3.1.5 Overview of allowed methods and trigger events, Originating Call Leg STD

	state
	methods allowed
	reportNotification
(trigger event)

	Initiating
	setMedia (as a request)

getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq
	callAttempt,
callAttemptAuthorized

	Analysing
	getMoreDialledDigitsReq,
setMedia (as a request)

getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq
	address_collected

	
	
	

	Active
	setMedia,
getMedia,

getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq
	address_analysed
service_code

	
	
	

	
	
	

	Releasing
	getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign
	release

	
	
	

7.4.3.2 Terminating Call Leg
[image: image2.wmf]�

Idle

�

Active

�

Releasing

�

do/ send reports if requested, or error reports if ...

ired

�

All States

�

Terminating Call Leg.

�

setMedia

�

getMedia

�

routeReq

�

IpMultiPartyCall.createCallLeg

�

IpMultiPartyCall.createAndRouteCallLegReq

�

IpAppMultiPartyCallControlManager.

�

reportNotification('terminating call attempt',

�

'teminating call attempt authorized', 'alerting',

�

'answer','service_code', 'redirected', 'queued')

�

network release[armed]

�

^IpAppCallLeg.eventReportRes

�

IpAppMultiPartyCallControlManager.

�

reportNotification(release)

�

release

�

'timer expiry'

�

deasign

�

 ^IpAppCallLeg.callLegEnded

�

'call_attempt_authorized', 'alerting',

�

'answer', 'service_code', 'redirected',

�

'queued', [armed]

�

^IpAppCallLeg.eventReportRes

�

Transitions/events not shown:

�

All states:

�

continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,

�

superviseRes: no state change,

�

All states except Releasing:

�

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan

�

NOTE: The update of the state model is made irrespectively of the event

�

monitor mode, i.e. independent of if the network events indicated as [armed]

�

have been requested by the application logic or not.

Figure : Application view on the Terminating CallLeg object

7.4.3.2.1 Idle

Entry events:

· Receipt of a createCallLeg() method to start an application initiated call leg connection.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an Call_Attempt trigger criterion.

Functions:

In this state the call leg object is created and the interface connection is idled.
 The application activity timer is being provided.
The network checks the authority/ability of the party to place the connection to the (destination) party with the given properties, e.g. based on the terminating party’s identity and service profile.

In this state the following functions are applicable:

· Invoking routeReq will result in actually routing the call leg object.
-
Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

-
Receipt of a routeReq() method from the application.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of a “release” indication as a result of a premature disconnect from the calling party.

7.4.3.2.2 Active
Entry events:

· Receipt of an routeReq will result in actually routing the call leg object.
· Receipt of a createAndRouteCallLeg() method to start an application initiated call leg connection.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Call_Attempt” trigger criterion.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Call_Attempt_Authorised” trigger criterion.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger criterion.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Serice_code” trigger criterion.
-
Detection of an “Queued” indication as a result of the call to remote party being queued.

· Detection of an “Alerting” indication as a result of the remote party being alerted.

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified for the call leg connection. In this state a connection to the call party is established whereby events from the network may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer (confirmation of connection setup).
Furthermore, In this state terminating mid call events can be received.

In this state the following functions are applicable:
· Detection of an “Queued” indication as a result of the call to remote party being queued.

-
On receipt of the “Queued” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_QUEUED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_QUEUED then no monitoring is performed.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger criterion.

-
On receipt of the “Alerting” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ALERTING then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ALERTING then no monitoring is performed.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.
· Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
On receipt of the “Answer” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ANSWER then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iv) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ANSWER then no monitoring is performed.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “service_code” trigger criterion.

-
The detection of a “service_code” trigger criterion suspends call leg processing.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then this is not a valid event (that event is not notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_SERVICE_CODE then no monitoring is performed.
-
On receipt of the “redirected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_REDIRECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_REDIRECTED then this is not a valid event (that event is not notified) and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_REDIRECTED then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

-
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

-
Detection of an “release” indication as a result of a disconnect from the calling and called party.
7.4.3.2.3 Releasing

Entry events:

-
Detection of an “Release” indication as a result of the network release initiated by one of the parties of the call leg connection.

-
Sending of the release() method by the application.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Release” trigger criterion.

· A transition due to fault detection to this state is made when the Call leg object is in state Idle ?? and no requests from the application have been received during a certain period.
-
Detection of a “release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v)
Detection that the remote party was not reachable.

vi)
Detection of a premature disconnect from the calling party.
Functions:
In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) the release event handling is performed.
ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested reports.

In this state the following functions are applicable:
· The detection of a “Release” trigger criterion.

-
On receipt of the “Release” indication the following functions are performed:

-
The network release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_RELEASE then no monitoring is performed.

· Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

· The callLegEnded() method is sent to the application after all information has been sent. In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application will also be informed that the connection has ended

· In case of abnormal termination due to a fault and the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed (callLegEnded).
Note: the call in the network may continue or be released, depending e.g. on the call state.
Exit events:
-
In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method.

-
Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method .

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	state
	methods allowed
	reportNotification
(trigger event)

	Idle
	routeReq,

getCall , getLastRedirectedAddress,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	-

	Active
	setMedia,

getMedia,

getCall , getLastRedirectedAddress, continueProcessing,

release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	call_attempt,
call_attempt_authorized,
queued,
redirected,
alerting,
answer,
service_code

	
	
	

	
	
	

	
	
	

	
	
	

	Releasing
	- getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign
	release

	
	
	

7.4.3.3

7.4.3.4

7.4.3.5

7.4.3.6

7.4.3.7

7.4.3.8

7.4.3.9

7.4.3.10

7.4.3.11

7.4.3.12
� Contact information: Jørgen Dyst, L.M.Ericsson A/S, Denmark, tel: +45 33 88 33 25, e-mail: Jorgen.Dyst@lmd.ericsson.se

	* Contact:
	Dirk De Gelder

Frans Haerens

Joergen Dyst
	(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be
(+45 33 88 33 25/ * jorgen.dyst@lmd.ericsson.se

H:\My Documments2001\SPAN#5\OSA API\TDs\ericsson\N5-12-legstd-actiontables.doc

