Ja3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #12, Sophia-Antipolis, France, 16 – 19 July 2001
Tdoc N5-010xyz

Source:
Alcatel, Chelo.Abarca@alcatel.fr
Ericsson, Ard.Jan.Moerdijk@eln.ericsson.se
Title:
How to trust an SCS
Agenda Item:
FW
Document for:
Approval
Category:
other
Work Item ID:
OSA

Doc Summary:

Specs involved:
TS 29.198
1 Introduction

The requirements on the OSA API result in the following four possible relationships between the Framework and the SCSs:

· Multi-vendor, multi-domain: this is the most general case, where a SCS needs to register on the FW (multi-vendorship) and authenticate (multi-domain).

· Multi-vendor, mono-domain: this is the case where the operator manages its own Framework; here a SCS need to register but, being in the same administrative domain as the FW, it is a trusted SCS; this means that it does not need to authenticate.

· Mono-vendor, mono-domain: in this case any internal shortcut is possible because no interactions between the FW and a SCS are visible outside the operator domain. This case is out of the scope of any standard.

· Mono-vendor, multi-domain: this case is, in practice, similar to the first one, because no advantages may be derived from having single-vendor SCSs if they are deployed in different domains.

The current OSA specifications treat all SCSs as non-trusted SCSs. This contribution proposes a short-cut that allows skipping authentication for trusted SCS, as well as a proposal for a complete model that can treat both trusted and untrusted SCSs in a consistent way.

Note that, while this contribution focuses on the SCS case, the proposal is valid as well for trusted Applications or a trusted Enterprise Operator
.

2 Today’s initial access

The following figure shows how an SCS accesses the Framework for the first time, for the purpose of registering or of interchanging integrity management information.

[image: image1.wmf] : FW

SCS

IpFWInitial.initiateAuthentication

IpFWAPILevelAuthentication.authenticate

IpFWAPILevelAuthentication.selectEncryptionMethod

...

...

IpFWAccess.obtainInterface

IpFWServiceRegistration.registerService

IpFwAPILevelAuthenticationl.requestAccess

Figure 1: registering an SCS
As the figure shows, an SCS only knows (from its initial configuration) a reference to the Framework IpInitial interface. This is enough because IpInitial gives its client a reference to the IpAccess Framework interface, which supports the method obtainInterface(), by means of which SCSs get references to any other Framework interface.

The initial access process can be summarised as:

1. an SCS knows a reference to IpInitial from initial configuration

2. it uses IpInitial to obtain a reference to IpAccess

3. it uses IpAccess to obtain references to any other Framework interface

But the first method ever invoked by an SCS is, mandatorily, initiateAuthentication() (any other method in IpInitial will raise an exception if called before; any other method in any other interface cannot be called because the SCS does not have a way to get a reference to any other interface).

This means that step 2 cannot happen unless authentication takes place. Therefore, the way things are specified today, all SCSs need to authenticate: the specification has no way to treat trusted SCSs.

3 Proposed short-cut for trusted SCSs

The short-cut

This contribution proposes a short-cut for skipping authentication when an SCS is trusted. It is undesirable to introduce unnecessary modifications in the way the current specification deals with the more general case of non-trusted SCS; therefore the scenario for them, outlined in the previous section, will remain unchanged.

The proposal is that trusted SCSs get a reference to IpAccess (instead of IpInitial) in their configuration. Configuration is internal to the operator, so this proposal allows operators to configure their SCSs as trusted or not.

SCSs which get a reference to IpInitial in their configuration (non-trusted) need to authenticate, because they cannot access any other Framework interface and all methods in IpInitial will throw an exception if called before authentication. On the other hand, SCSs which get a reference to IpAccess in their configuration will go directly to step 3 in the sequence for initial access outlined in the previous section.

A problem

There is though a problem with this short-cut: the cardinality of the interfaces IpInitial and IpAccess is not the same:

· IpInitial is a singleton, and the same instance is used by the different SCSs which attempt an initial access.

· A different instance of IpAccess is assigned to serve each client SCS instance.

Thus the lifecycle and maintenance of both interface references is not similar – and this means that the proposed short-cut does not, after all, allow for a formally similar treatment of trusted and non-trusted SCSs, where the only difference should be the authentication step.

4 The final proposal

The solution to this problem is to define an access related interface reference with the same cardinality and similar life-cycle as IpInitial. In line with that, this contribution proposes the introduction of a factory of IpAccess interfaces. Trusted SCSs would be configured with the knowledge of a reference to a factory of IpAccess interface instances which is, as IpInitial, a singleton that serves all SCSs who want access. This factory would then create an instance of IpAccess for each accessing SCS.

Note that, as said above, there should not be any difference between the process for trusted and non-trusted SCSs except for the need or not of the authentication step. This implies that non -trusted SCSs, which need to authenticate before being given a reference to IpAccess, should also be given a reference to the access factory singleton, which would then create an IpAccess interface instance for each of them.

The following figure shows the integrated model for access of trusted and non-trusted SCSs; trusted SCSs skip the authentication.

[image: image2.wmf] : FW

SCS

IpInitial.initiateAuthentication

IpAPILevelAuthentication.authenticate

IpAPILevelAuthentication.selectEncryptionMethod

IpAPILevelAuthentication.authenticationSucceeded

IpAccess.obtainInterface

IpFWServiceRegistration.registerService

IpAPILevelAuthentication.authenticate

IpAPILevelAuthentication.authenticationSucceeded

IpAPILevelAuthentication.requestAccess

IpAccessFactory.getAccess

Figure 2: Service registration for a non-trusted SCS. A trusted SCS would only need the latter 3 methods.

5 Impact in the specification

The solution proposed in this contribution implies the modification of the existing sequence diagrams as shown in the previous section. It also implies the introduction of a new interface class, IpAccessFactory, defined in the following way:

<<Interface>>

IpAccessFactory

getAccess (accessType : in TpAccessType, AccessInterface : in IpInterfaceRef, accessInterface : out IpInterfaceRefRef) : TpResult

and changing the IpAuthentication interface so that it returns a reference to the IpAccessFactory interface when the clients request access after the authentication process.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, fwAccessFactoryInterface : out IpInterfaceRefRef) : TpResult

6 Conclusion

This contribution raises the issue of how to treat trusted SCSs. It proposes a solution for it that results in a consistent mechanism for any kind of SCS where trusted ones may skip some steps.

As a conclusion the Initial Access sequence diagrams are modified, and a new interface class needs to be defined in the specification. This contribution proposes to make these changes.

Note that these modifications do not endanger the alignment between FW-Svc and FW-App interfaces. The same short-cut allows the development of “trusted Applications”, that is, applications developed by the operator using OSA.

� See contribution N5-010506, which proposes to align the initial access between the Framework and any other administrative domain.

�PAGE \# "'PAGE: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � LIENHYPERTEXTE "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

