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Problem

A decision was taken during the recent restructuring of the exception handling in 120070 that the methods on the IpApp* interfaces should not be capable of throwing exceptions.  However, for the framework, the situation is different from most.  For the framework, there is a dialogue that occurs between the framework and its user.  This dialogue can include mutual authentication and the signing of an agreement to use a service. 

Proposal

Lucent feels that methods that form a part of the dialogue referenced above, methods that are not called in direct response to a method invocation on the framework, form a separate group of methods that should be allowed to throw exceptions.

Lucent proposes that this group of methods consists of:

IpAppAccess.signServiceAgreement;

IpAppAccess.terminateServiceAgreement;

IpAppAccess.terminateAccess.

For example, if the FW passes in invalid information (signing algorithm, service token or agreement text) to the IpAppAccess.signServiceAgreement() method, then the method should be able to indicate to the server side that it cannot do anything.  We feel that simply returning a null digital signature is not really an acceptable mode of indicating the failure.

Note: If the IpApp and IpSvc interfaces are aligned as per contribution N5-010445, then some of this work might already be done as methods on the IpSvc interfaces are allowed to throw exceptions.

Resulting changes

Note: The method description for IpAppOAM.systemDataAndTimeQuery still states that the method can throw a P_INVALID_DATE_TIME_FORMAT exception.  It should be considered by the editor of 29.198-3 whether this method is ACTUALLY capable of throwing this exception

The following method descriptions should be updated to specify the exceptions that may be thrown.  These exceptions are the same as those for the corresponding methods on the framework interfaces with the sole difference being that no ACCESS_DENIED exceptions may be thrown by the IpApp* interfaces.

The description of the IpAppAccess interface has been updated as the previous description did not appear to be complete.

XXX. Interface Class IpAppAccess 

Inherits from: IpInterface.
IpAppAccess interface is offered by the client application to the framework to allow it to initiate interactions during the access session. 
<<Interface>>

IpAppAccess



signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult



Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the client application agrees, it signs the service agreement, returning its digital signature to the framework. 

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.)  If the serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is thrown.
agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application.  If the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.
digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.
 Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service. 

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.  If the serviceToken is invalid, or unknown to the client application, the P_INVALID_SERVICE_TOKEN exception will be thrown.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework.  If a match is made, the service agreement is terminated, otherwise the P_INVALID_SIGNATURE exception is thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.  If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,  the framework should terminate all outstanding service agreements for that client application, and should take steps to terminate the client application's access session WITHOUT invoking terminateAccess() on the client application.  This follows a generally accepted security model where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it. 

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the client application, the P_INVALID_SIGNING_ALGORITHM exception will be thrown.
digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework.  If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception is thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
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