Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-010613
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	TS 29.198-4
	CR
	CRNum
	(

rev
	c
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Introduction of MPCC Originating and Terminating Call Leg STDs for IpCallLeg

	
	

	Source:
(

	Ericsson, Telcordia

	
	

	Work item code:
(

	OSA
	
	Date: (

	31 July 2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The behaviour of the MPCC API is unclear. The Call Leg STDs for MPCC are needed together with the proposed changes for the associated methods and data.

	
	

	Summary of change:
(

	The following main changes apply

1) Introduction of Originating Call Leg STD and Terminating Call Leg STD

2) Changed semantics and modifications to existing MPCC methods to clarify behaviour of the MPCC API.

3) Removal of method getMoreDialledDigitsReq\Res since a detailed behaviour is undefined and requested functionality for digit collection is already covered with existing methods eventReportReq\Res.

4) Modifications for MPCC data types to correct errors and adapt to the clarified behaviour of the MPCC API supporting the new Originating Call Leg STD and Terminating Call Leg STDs. This also covers the separation of events into originating and terminating events for: call attempt, call attempt authorized, mid-call (service code), and clarifications for event handling.

	
	

	Consequences if
(

not approved:
	Lacking clarification of the behaviour of the MPCC API if the Call LEG STDs and associated modifications are not introduced.

	
	

	Clauses affected:
(

	7.3.5, 7.3.6, 7.4.2, 7.4.2.5, 7.4.3, 7.4.3.1 to 7.4.3.10, 7.6 and 7.6.2

	
	

	Other specs
(

	X
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
7.3.5 Interface Class IpCallLeg
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
	<<Interface>>

IpCallLeg

	

	routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMedia (callLegSessionID : in TpSessionID) : void

detachMedia (callLegSessionID : in TpSessionID) : void

getLastRedirectedAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tarrifSwitch : in TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method

routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is used, otherwise network or gateway provided addresses will be used. This operation continues processing of the call leg.
…

Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded().This operation continues processing of the call leg
…

Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to. . If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.
Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_STATE
…

Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media streams to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

…

Method

continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when it received a callLegEnded() or callEnded(). This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
7.3.6 Interface Class IpAppCallLeg
Inherits from: IpInterface
IpService
The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events.
	<<Interface>>

IpAppCallLeg

	

	eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

…

…

Method

callLegEnded()

This method indicates to the application that the leg has terminated. The application has received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-called disarming rules are captured in the data definition of
the event type.

If this method is invoked with a monitor mode of P_MONITOR_MODE_INTERRUPTED, then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
7.4.2 State Transition Diagram for IpMultiPartyCall

…

7.4.2.5 Overview of allowed methods

	Methods applicable
	Call Control Call State
	Call Control Manager State
	

	getCallLegs,

	Idle, Active, Released
	-
	

	createCallLeg,

createAndRouteCallLegReq, setAdviceOfCharge, superviseReq,
	Idle, Active
	Active
	

	Release
	Active
	Active
	

	Deassign
	Idle, Active
	-
	

	GetInfoReq
	Idle
	Active
	

	SetChargePlan
	Idle, Active
	Active
	

7.4.3 State Transition Diagrams for IpCallLeg

 The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg and one for the terminating call leg.

Call Leg State Model General Objectives:

1 Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2 Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg model.

3 States are as seen from the application: if there is no change in the method an application is permitted to apply on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on terminating leg do not change state. NOTE 2
4 The application is to send a request to continue processing (using an appropriate method like continueProcessing) for each leg and event reported in monitor mode ‘interrupt’. The call processing is resumed in the network when no leg in the call is left suspended.
5 In case on a leg more than one network event (for example mid-call event ‘service_code’) is to be reported to the application at quasi the same time, then the events are to be reported one by one to the application in the order received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to be reported to the application until a request to resume call processing for the current reported event has been received on the leg.
 NOTE1: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in the P_CALL_MONITOR_MODE_INTERRUPT.
NOTE2: Even though there in the Originating Call Leg STD is no change in the methods the application is permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are maintained. The states may therefore from an application viewpoint appear as just one state that may be have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed as a specialised task that may not at all be applicable in some networks and therefore here described as being a state on its own.

1.

7.4.3.1 Originating Call Leg
[image: image2.wmf]�

Initiating

�

Analysing

�

Active

�

Releasing

�

do/ send reports if requested, or error reports if required

�

Originating Call Leg.

�

Transitions/events not shown:

�

All states:

�

continueProcessing, getLastRedirectedAddress, getCall: no state change

�

All states except Releasing:

�

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq,

�

setChargePlan

�

All States

�

'originating call attempt authorized'

�

detachMedia

�

IpAppMultiPartyCallControlManager.

�

reportNotification(originatingCallAttempt)

�

IpAppMultiPartyCallControlManager.

�

reportNotification(originatingCallAttemptAuthorized)

�

IpAppMultiPartyCallControlManager.

�

reportNotification(address_collected)

�

attachMedia

�

'originating service_code'

�

'Address Analysed'

�

IpAppMultiPartyCallControlManager.

�

reportNotification(address_analysed)

�

'network release'

�

'network release'

�

IpAppMultiPartyCallControlManager.

�

reportNotification(originating

�

release)

�

'timer expiry'

�

deasign

�

 ^IpAppCallLeg.callLegEnded

�

detachMedia

�

'Address_Collected'

�

 IpAppMultiPartyCallControlManager.

�

reportNotification(originating service code)

�

'Address Collected'

�

'networkRelease'

�

'release'

�

attachMedia

�

attachMedia

�

detachMedia

Figure : Application view on the Originating CallLeg object

7.4.3.1.1 Initiating

Entry events:

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Originating_Call_Attempt” initial notification criterion.
-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Originating_Call_Attempt_Authorised” initial notification criterion.
Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination) party with the given properties, e.g. based on the originating party’s identity and service profile.
The setup of the connection for the party has been initiated and the application activity timer is being provided.
The figure below shows the order in which network events may be detected in the Initiating state and depending on the monitor mode be reported to the application.

[image: image3.wmf]

oCA

oCAA

 AC

See Note1

oREL

See

Note2

Initiating

State

Figure : Application view on event reporting order in Initiating State

Note 1: Event oCA only applicable as an intitial notification .

Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA Originating Call Attempt; oCAA Originating Call Attempt Authorized; AC Address Collected, oREL Originating Release.

In this state the following functions are applicable:

· The detection of a “Originating_Call_Attempt” initial notification criterion.
· The detection of an “Originating_Call_Attempt_Authorised” initial notification criterion as a result that the call attempt authorisation is successful.
-
The report of the “Originating_Call_Attempt_Authorised” event indication whereby the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

-
The receipt of destination address information, i.e. initial information package/dialling string as received from calling party.

-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

· Availability of destination address information, i.e. the initial information package/dialling string received from the calling party.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period.
-
Receipt of a deassign() method.

· Receipt of a release() method.
· Detection of a “originating release” indication as a result of a premature disconnect from the calling party.
7.4.3.1.2 Analysing
Entry events:

-
Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial information package/dialling string from the calling party.

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Address_Collected” initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.
The received information (dialled address string from the calling party) is being collected and examined in accordance to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be collected. Upon completion of address collection the address is analysed.
The address analysis is being made according to the dialling plan in force to determine the routing address of the call leg connection and the connection type (e.g. local, transit, gateway).
The request (with eventReportReq method) to collect a variable number of more address digits and report them to the application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly, e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.
The figure below shows the order in which network events may be detected in the Analysing state and depending on the monitor mode be reported to the application.

[image: image4.wmf]

oCAA

AC

AA

oREL

Note1

Analysing

State

Figure : Application view on event reporting order in Analysing State

Note 1: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

oCAA Originating Call Attempt Authorized; AC Address Collected; AA Address Analysed; oREL Originating Release.

In this state the following functions are applicable:

-
The detection of a “Address_Collected“ initial notification criterion.
-
On receipt of the “Address_Collected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.
· Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.
.
-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq() method.
Exit events:

-
Detection of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

-
Receipt of a deassign() method.

· Receipt of a release() method.
-
Detection of a “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.1.3 Active
Entry events:

-
Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of address.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Address_Analysed initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.
The figure below shows the order in which network events may be detected in the Active state and depending on the monitor mode be reported to the application.

[image: image5.wmf]

Active

State

AA

oSC

 oREL

See Note1

See

Note2

AC

Figure : Application view on event reporting order Active State
Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service code is reported to the application
Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC Address Collected; AA Address Analysed; oSC Originating Service Code; oREL Originating Release.
In this state the following functions are applicable:

-
The detection of a Address_Analysed initial indication criterion.

-
On receipt of the “Address_Analysed” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.
-
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· In this state the routing information is interpreted, the authority of the calling party to establish this connection is verified and the call leg connection is set up to the remote party.
· -
In this state a connection to the call party is established.
-
Detection of a “terminating release” indication (not visible to the application) from remote party caused by a network release event propagated from a terminating call leg causing the originating call leg STD to transit to Releasing state:

Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” initial indication criterion.

-
On receipt of the “originating_service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

 ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing continues..

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

· Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

-
Detection of an “originating release” indication as a result of a disconnect from the calling party and and an “terminating release” indication as a result of a disconnect from called party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

7.4.3.1.4 Releasing
Entry events:

-
Detection of an “Originating_Release” or “Terminating Release” indication as a result of the network release initiated by calling party of called party..

-
Reception of the release() method from the application.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Originating_Release” initial indication criterion.
-
A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from the application have been received during a certain time period (timer expiry).
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) the network release event handling is performed.
ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested reports.

In this state the following functions are applicable:

· The detection of a “originating_release” initial indication criterion..
-
On receipt of the “originating_release” indication the following functions are performed:

-
The network release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_RELEASE then no monitoring is performed.

· Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

· The callLegEnded() method is sent to the application after all information has been sent. In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application will also be informed that the connection has ended

· In case of abnormal termination due to a fault and the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed (callLegEnded).
Note: the call in the network may continue or be released, depending e.g. on the call state.
-
In case the release() method is received in Releasing state it will be discarded. The request from the application to release the leg is ignored in this case because release of the leg is already ongoing.
Exit events:

-
In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method.

-
Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method .

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	state
	methods allowed

	Initiating
	
attachMedia (as a request),
detachMedia, (as a request)
getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	Analysing
	
attachMedia (as a request),
detachMedia, (as a request)

getCall , getLastRedirectedAddress, continueProcessing,
release (call leg),
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	
	

	Active
	attachMedia,
detachMedia,

getCall , getLastRedirectedAddress, continueProcessing,
release deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	
	

	
	

	Releasing
	getCall , getLastRedirectedAddress, continueProcessing,
 release
deassign

	
	

7.4.3.2 Terminating Call Leg
[image: image6.wmf]�

Idle

�

Active

�

Releasing

�

do/ send reports if requested, or error reports if ...

ired

�

All States

�

Terminating Call Leg.

�

attachMedia

�

routeReq

�

IpMultiPartyCall.createCallLeg

�

IpMultiPartyCall.createAndRouteCallLegReq

�

IpAppMultiPartyCallControlManager.

�

reportNotification('terminating call attempt',

�

'teminating call attempt authorized', 'alerting',

�

'answer','terminating service code', 'redirected', 'queued')

�

'network release'

�

IpAppMultiPartyCallControlManager.

�

reportNotification(terminating release)

�

release

�

'timer expiry'

�

deasign

�

 ^IpAppCallLeg.callLegEnded

�

'terminating call attempt authorized',

�

'alerting', 'answer', 'terminating service

�

code', 'redirected', 'queued'

�

detachMedia

�

Transitions/events not shown:

�

All states:

�

continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,

�

superviseRes: no state change,

�

All states except Releasing:

�

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

�

When the application is notified in reportNotfication of an call related network event

�

associated with the Terminating Call Leg STD, then the Originating Call Leg STD is

�

created and is initialized to be in the Active state.

Figure : Application view on the Terminating CallLeg object

7.4.3.2.1 Idle

Entry events:

· Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.
 The application activity timer is being provided.

In this state the following functions are applicable:

· Invoking routeReq will result in a request to actually route the call leg object.
-
Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

-
Receipt of a routeReq() method from the application.

-
Application activity timer expiry indicating that no requests from the application have been received during a certain period to continue processing.

-
Receipt of a deassign() method.

-
Receipt of a release() method.

-
Detection of a network release event being an “originating release” indication as a result of a premature disconnect from the calling party.

7.4.3.2.2 Active
Entry events:

· Receipt of an routeReq will result in actually routing the call leg object.
· Receipt of a createAndRouteCallLeg() method to start an application initiated call leg connection.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Terminating_Call_Attempt” trigger criterion.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Terminating_Call_Attempt_Authorized” trigger criterion.
Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified for the call leg connection. In this state a connection to the call party is established whereby events from the network may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer (confirmation of connection setup).
Furthermore, In this state terminating service code events can be received.
The figure below shows the order in which network events may be detected in the Active state and depending on the monitor mode be reported to the application.

[image: image7.wmf]

tCAA

RD

tCA

tSC

AL

ANS

Note2

 Q

tREL

Note3

Note 1

Active

State

Figure : Application view on event reporting order in Active State

.
Note 1: Event tCA applicable as initial notification

Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service code is reported to the application
Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA Terminating Call Attempt; tCAA Terminating Call Attempt Authorized; AL Alerting; ANS Answer; tREL Terminating Release; Q Queued; RD Redirected; tSC Terminating Service Code.

In this state the following functions are applicable:
· The detection of an “Terminating_Call_Attempt” initial notification criterion as a result that the call attempt.

· The detection of an “Terminating_Call_Attempt_Authorised” initial notification criterion as a result that the call attempt authorisation is successful.

-
The report of the “Terminating_Call_Attempt_Authorised” event indication whereby the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing continues.

iv) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

· Detection of an “Queued” indication as a result of the call to remote party being queued.

-
On receipt of the “Queued” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_QUEUED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_QUEUED then no monitoring is performed.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Alerting” trigger criterion.

-
On receipt of the “Alerting” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ALERTING then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ALERTING then no monitoring is performed.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Answer” trigger criterion.
· Detection of an “Answer” indication as a result of the remote party being connected (answered).

-
On receipt of the “Answer” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_ANSWER then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iv) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_ANSWER then no monitoring is performed.
· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “service_code” trigger criterion.

-
The detection of a “service_code” trigger criterion suspends call leg processing.

-
On receipt of the “service code” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.
-
On receipt of the “redirected” indication the following functions are performed:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_REDIRECTED then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_REDIRECTED then no monitoring is performed.

-
Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

-
Detection of a network release event being an “terminating release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

iv) Detection that the remote party was not reachable.
-
Detection of a network release event being an “originating release” indication as a result of the following events:

vi)
Detection of a premature disconnect from the calling party.

-
Receipt of a deassign() method.

-
Receipt of a release() method from the application.

-
Detection of a netwok release event being an “originating release” indication as a result of a disconnect from the calling party or a “terminating release” indication as a result of a disconnect from the called party.
7.4.3.2.3 Releasing

Entry events:

-
Detection of a network release event being an “originating release” indication as a result of the network release initiated by calling party or a “terminating release” indication as a result of the network release initiated by called party..

-
Sending of the release() method by the application.

· Sending of a reportNotification() method by the IPMultipartyCallControlManager for an “Terminating Release” trigger criterion.

· A transition due to fault detection to this state is made when the Call leg object awaits a request from the application and this is not received within a certain time period.
-
Detection of a network event being a “terminating release” indication as a result of the following events:

i)
Unable to select a route or indication from the remote party of the call leg connection cannot be presented (this is the network determined busy condition)

ii)
Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g. business group restriction mismatch).

iii)
Detection of a route busy condition received from the remote call leg connection portion.

iv)
Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.
-
Detection of a network release event being an “originating release” indication as a result of the following events:

vi)
Detection of a premature disconnect from the calling party.
Functions:
In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) the release event handling is performed.
ii) the possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to the application.
iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested reports.

In this state the following functions are applicable:
· The detection of a “Terminating Release” trigger criterion.

-
On receipt of the network release event being a “Terminating Release” indication the following functions are performed:

-
The network release event handling is performed as follows:

i)
When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event P_CALL_EVENT_TERMINATING_RELEASE then the event is intercepted and call leg processing is suspended.

ii)
When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing continues.

iii)
When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

· Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

· The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to the application with respectively the getInfoRes() and/or superviseRes() methods.

· The callLegEnded() method is sent to the application after all information has been sent. In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application will also be informed that the connection has ended

· In case of abnormal termination due to a fault and the application requested for call leg related information previously, the application will be informed that this information is not available and additionally the application is informed that the call leg object is destroyed (callLegEnded).
Note: the call in the network may continue or be released, depending e.g. on the call state.
·
In case the release() method is received in Releasing state it will be discarded. The request from the application to release the leg is ignored in this case because release of the leg is already ongoing.
Exit events:
-
In case that the application has not requested additional call leg related information the call leg object is destroyed immediately and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method.

-
Detection of the sending of the last call leg information to the application the Call Leg object is destroyed and additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() method .

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	state
	methods allowed

	Idle
	routeReq,

getCall , getLastRedirectedAddress,
release,
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	Active
	attachMedia
detachMedia
getCall , getLastRedirectedAddress, continueProcessing,

release,
deassign

eventReportReq,
getInfoReq,
setChargePlan, setAdviceOfCharge,
superviseReq

	
	

	
	

	
	

	
	

	Releasing
	 getCall , getLastRedirectedAddress, continueProcessing,
 release,
deassign

	
	

7.4.3.3

7.4.3.4

7.4.3.5

7.4.3.6

7.4.3.7

7.4.3.8

7.4.3.9

7.4.3.10

7.4.3.11

7.4.3.12
7.6 Multi-Party Call Control Data Definitions

The present document provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions
…

TpCallEventType

Defines a specific call event report type.

	Name
	Value
	Description

	P_CALL_EVENT_UNDEFINED
	0
	Undefined

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	1
	A originating call attempt takes place (e.g. Off-hook event).

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIZED
	2
	A originating call attempt is authorized

	P_CALL_EVENT_ADDRESS_COLLECTED
	3
	The destination address has been collected.

	P_CALL_EVENT_ADDRESS_ANALYSED
	4
	The destination address has been analysed.

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	5
	Mid-call originating service code received.

	P_CALL_EVENT_ORIGINATING_RELEASE
	6
	A originating call/call leg is released

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	7
	A terminating call attempt takes place

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED
	8
	A terminating call is authorized

	P_CALL_EVENT_ALERTING
	9
	Call is alerting at the call party.

	P_CALL_EVENT_ANSWER
	10
	Call answered at address.

	P_CALL_EVENT_TERMINATING_RELEASE
	11
	A terminating call/call leg isreleased or the call could not be routed.

	P_CALL_EVENT_REDIRECTED
	12
	Call redirected to new address: an indication from the network that the call has been redirected to a new address
(no events are disarmed as a result of this).

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	13
	Mid-call terminating service code received.

	P_CALL_EVENT_QUEUED
	14
	The Call Event has been queued. (no events are disarmed as a result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

· If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed.

· If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

· When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call leg may become disarmed (see table below) .

· If a call is released, then all events related to that call are disarmed.

Note: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by eventReportReq() in case the application is still interested in these events.
	Event Occurred
	Events Disarmed

	P_CALL_EVENT_UNDEFINED
	Not Applicable

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	Not applicable, can only be armed as trigger

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIZED
	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIZED

	P_CALL_EVENT_ADDRESS_COLLECTED
	P_CALL_EVENT_ADDRESS_COLLECTED

	P_CALL_EVENT_ADDRESS_ANALYSED
	P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

	
	

	P_CALL_EVENT_ALERTING
	

P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

	P_CALL_EVENT_ANSWER
	

P_CALL_EVENT_ANSWER

P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

	P_CALL_EVENT_ORIGINATING_RELEASE
	All pending network events for the call leg are disarmed

	P_CALL_EVENT_TERMINATING_RELEASE
	All pending network events for the call leg are disarmed

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE1

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE1

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed.

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.
	
	Tag Element Type
	

	
	TpCallEventType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element

Name

	P_CALL_EVENT_UNDEFINED
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIZED
	NULL
	Undefined

	P_CALL_EVENT_ADDRESS_COLLECTED
	TpInt32
	MinAddressLength

	P_CALL_EVENT_ADDRESS_ANALYSED
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_EVENT_ORIGINATING_RELEASE
	TpCallReleaseCauseSet
	ReleaseCauseSet

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	NULL
	Undefined

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORIZED
	NULL
	Undefined

	P_CALL_EVENT_ALERTING
	NULL
	Undefined

	P_CALL_EVENT_ANSWER
	NULL
	Undefined

	P_CALL_EVENT_TERMINATING_RELEASE
	TpCallReleaseCauseSet
	ReleaseCauseSet

	P_CALL_EVENT_REDIRECTED
	NULL
	Undefined

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_EVENT_QUEUED
	NULL
	Undefined

	
	
	

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types of events.
	
	Tag Element Type
	

	
	TpCallEventType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element

Name

	P_CALL_EVENT_UNDEFINED
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORIZED
	NULL
	Undefined

	P_CALL_EVENT_ADDRESS_COLLECTED
	TpAddress
	CollectedAddress

	P_CALL_EVENT_ADDRESS_ANALYSED
	TpAddress
	CalledAddress

	P_CALL_EVENT_ORIGINATING_SERVICE_CODE
	NULL
	Undefined

	P_CALL_EVENT_ORIGINATING_RELEASE
	TpCallReleaseCause
	ReleaseCause

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT
	NULL
	Undefined

	P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORIZED
	NULL
	Undefined

	P_CALL_EVENT_QUEUED
	NULL
	Undefined

	P_CALL_EVENT_ALERTING
	NULL
	Undefined

	P_CALL_EVENT_ANSWER
	NULL
	Undefined

	P_CALL_EVENT_TERMINATING_RELEASE
	TpCallReleaseCause
	ReleaseCause

	P_CALL_EVENT_REDIRECTED
	TpAddress
	ForwardAddress

	P_CALL_EVENT_TERMINATING_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

	Sequence Element

Name
	Sequence Element

Type
	Description

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	OriginatingAddress
	TpAddressRange
	Defines the origination address or address range for which the notification is requested.

	
	
	

	
	
	

	
	
	

	
	
	

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

	Sequence Element

Name
	Sequence Element

Type
	Description

	DestinationAddress
	TpAddress
	Contains the destination address of the call.

	OriginatingAddress
	TpAddress
	Contains the origination address of the call

	
	
	

…

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 32

_1056936938.doc

AA

AC

Analysing�State

oCAA

oREL

Note1

_1057380537.doc

See Note1

 oREL

oSC

Active�State

AA

AC

See Note2

_1058075605.doc

Note2

ANS

AL

tSC

tCA

RD

tCAA

 Q

tREL

Note3

Note 1

Active State

_1056888678.doc

See Note1

 AC

oCAA

Initiating�State

oCA

oREL

See Note2

