	3GPP TSG_CN5 (Open Service Access - OSA)

Meeting #12, Sophia Antipolis, FRANCE, 16 - 19 July 2001
	N5-010605


Source:
Ulticom :


Stephanie.Dithurbide@ulticom.com 


Thomas.Girard@ulticom.com
Title:
use Base64 to encode bytes into TpString

Agenda Item:


Document for:
Discussion

Category:
TS

Work Item ID:


Doc Summary:


Specs involved:
3GPP TS 29.198-3 V4.1.0 (2001-06)

Problem

According to the specification, the challenge and response used in the authenticate methods and the signed agreement texts are of type TpString. Such parameters are signed or encoded using different algorithms or signing keys, but all of them result in a stream of bytes that cannot necessarily be represented as a String in all programming languages. The only way to comply with the method signature is to use a way to convert these bytes into a TpString in a reversible way. The same set of bytes can result in different Strings depending on the platform and/or the conversion method used. As the conversion method is not defined in the specifications, each implementation can choose its own algorithm and it creates a portability issue.

Example: in Java it is possible to construct a String from an array of bytes but it constructs a new String by converting the specified array of bytes using the specified character encoding. The length of the new String is a function of the encoding, and hence may not be equal to the length of the byte array. 

Two different encoding will results in two different Strings. To have the same array of byte, the same encoding has to be used for encoding and decoding. The problem is that the default encoding depends on the locale used on the machine. If a client application hosted in a machine located in Japan tries to authenticate with a framework located in Europe, the same string will have different byte representation and the authentication will always fail.

As a matter of fact, this is not a Java specific issue. It can happen in any other programming language.

Proposal

Ulticom proposes to define in the specification that the TpString representing the challenge, response and digital signature are created using the Base64.

As described in RFC 2045:

The Base64 Content-Transfert-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable. The encoding and decoding algorithms are simple, but the encoded data are consistently about 33 percent larger than the unencoded data. 

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per printable character.

This subset has the important property that it is represented identically in all versions of ISO 646, including US ASCII, and all characters in the subset are also represented identically in all versions of EBCDIC. Other popular encoding do not share this property, and thus do not fulfil the portability requirements.

Resulting Changes

8.1.1 Interface Class IpAppAPILevelAuthentication 

Inherits from: IpInterface.

	<<Interface>>

IpAppAPILevelAuthentication

	

	authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult




Method

authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in prescribedMethod.  The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges and the order of the exchanges is dependent on the prescribedMethod. (These may be interleaved with authenticate() calls by the client application on the IpAPILevelAuthentication interface. This is defined by the prescribedMethod.) 

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod() on the IpAPIlLevelAuthentication interface. This parameter contains the agreed method for authentication.  If this is not the same value as returned by selectEncryptionMethod(), then an error code (P_INVALID_AUTH_CAPABILITY) is returned.

challenge : in TpString

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().The bytes representing the challenge are converted into a TpString using the Base64 algorithm (RFC 2045)
response : out TpStringRef

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().The bytes representing the response are converted into a TpString using the Base64 algorithm (RFC 2045)
8.1.2 Interface Class IpAppAccess 

Inherits from: IpInterface.

The Access client application interface is used by the Framework to perform the steps that are necessary in order to allow it to service access. 

	<<Interface>>

IpAppAccess

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : out TpStringRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpString) : TpResult




Method

signServiceAgreement()

This method is used by the framework to request that the client application sign an agreement on the service. It is called in response to the client application calling the selectService() method on the IpAccess interface of the framework. The framework provides the service agreement text for the client application to sign. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the client application agrees, it signs the service agreement, returning its digital signature to the framework. 

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.)  If the serviceToken is invalid, or not known by the client application,then an error code (P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application.  If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : out TpStringRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework. The bytes representing the digitalSignature are converted into a TpString using the Base64 algorithm (RFC 2045)
Method

terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service. 

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.  If the serviceToken is invalid, or unknown to the client application, an error code (P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework.  If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned. The bytes representing the digitalSignature are converted into a TpString using the Base64 algorithm (RFC 2045)
Method

terminateAccess()

The terminateAccess operation is used by the framework to end the client application's access session.

After terminateAccess() is invoked, the client application will no longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.  If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing,  the framework should terminate all outstanding service agreements for that client application, and should take steps to terminate the client application's access session WITHOUT invoking terminateAccess() on the client application.  This follows a generally accepted security model where the framework has decided that it can no longer trust the application and will therefore sever ALL contact with it. 

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the client application, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client application. The client application can check that the terminationText has been signed by the framework.  If a match is made, the access session is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned. The bytes representing the digitalSignature are converted into a TpString using the Base64 algorithm (RFC 2045)
8.1.5 Interface Class IpAPILevelAuthentication 

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client application to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework. 

	<<Interface>>

IpAPILevelAuthentication

	

	selectEncryptionMethod (authCaps : in TpAuthCapabilityList, prescribedMethod : out TpAuthCapabilityRef) : TpResult

authenticate (prescribedMethod : in TpAuthCapability, challenge : in TpString, response : out TpStringRef) : TpResult

abortAuthentication () : TpResult

authenticationSucceeded () : TpResult




Method

authenticate()

This method is used by the client application to authenticate the framework using the mechanism indicated in prescribedMethod. The framework must respond with the correct responses to the challenges presented by the client application. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges and the order of the exchanges is dependent on the prescribedMethod.  

Parameters

prescribedMethod : in TpAuthCapability

see selectEncryptionMethod(). This parameter contains the method that the framework has specified as acceptable for authentication.  If this is not the same value as returned by selectEncryptionMethod(), then the framework returns an error code (P_INVALID_AUTH_CAPABILITY).

challenge : in TpString

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().The bytes representing the challenge are converted into a TpString using the Base64 algorithm (RFC 2045)
response : out TpStringRef

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().The bytes representing the response are converted into a TpString using the Base64 algorithm (RFC 2045)
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AUTH_CAPABILITY

8.1.6 Interface Class IpAccess 

Inherits from: IpInterface.

	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName, fwInterface : out IpInterfaceRefRef) : TpResult

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, appInterface : in IpInterfaceRef, fwInterface : out IpInterfaceRefRef) : TpResult

selectService (serviceID : in TpServiceID, serviceToken : out TpServiceTokenRef) : TpResult

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm, signatureAndServiceMgr : out TpSignatureAndServiceMgrRef) : TpResult

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpString) : TpResult

endAccess (endAccessProperties : in TpEndAccessProperties) : TpResult




Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application.  The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. 

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework.  If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

signatureAndServiceMgr : out TpSignatureAndServiceMgrRef

This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.






























structure TpSignatureAndServiceMgr {
























digitalSignature: 
TpString;







serviceMgrInterface:
 IpInterfaceRef;





















};


























The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application. The bytes representing the digitalSignature are converted into a TpString using the Base64 algorithm (RFC 2045)






























The serviceMgrInterface is a reference to the service manager interface for the selected service.

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED

Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

 

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.  If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature : in TpString

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned. The bytes representing the digitalSignature are converted into a TpString using the Base64 algorithm (RFC 2045)
Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNATURE

