3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, CA, USA, 21-24 May 2001
Tdoc N5-010413

Source:
Ericsson, Ard.Jan.Moerdijk@eln.ericsson.se
Title:
Scenarios to accompany the Call Leg STD
Agenda Item:

Document for:
Discussion
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:

Introduction

This document is intended to accompany the Call Leg STD defined in a separate contribution. The document contains use cases and scenarios that have been used to validate the STD.
1 Call Leg STD

Figure 1: STD for incoming call leg

Figure 2: STD for outgoing call leg

2 Use casess

2.1 Number translation use case

The use case begins when the SCS is informed that a party is interested in placing a call. The party has entered a specific number that has been analysed by the network (e.g. switch). The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event and in turn the application translates the address the party entered to another number and informs the SCS it is interested to be informed when the connection is successfully setup. Next the application informs the SCS to route the call to the new address.

2.2 Destination address checking application

This is a variation on the Simple Number translation use case. In this case, however, the number is not translated but the application just checks the destination address.

2.3 NT leading to 3 party call

This use case is also a variation to the Number translation use case. However, after a two party call is established, the application creates a new call leg and requests to route it to it’s destination address in order to establish a 3 party call.

2.4 Call Barring use case

This use case begins when the SCS is informed that a call is about to be placed towards the terminating party. The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event. The application checks that the party originating the call is allowed to call the destination party. If this is the case, the application informs the SCS it is interested to be informed when the connection is successfully setup or not. Next the application tells the SCS to continue the call.

2.5 Conference call use case

This use case begins when the application initiates a 3 party call. First the application requests the SCS to create the first call leg. Next it tells the application it is interested in whether the connection is setup successfully or not. Then the application requests to route the call leg to the destination address. In case the party answers, the application is informed and the application requests the SCS to create the second Call Leg. The procedure is repeated until there are 3 parties in the call.

2.6 Call forwarding use case

This use case begins when a call is made from A to B but the B-party is detected to be busy. The application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system.

3 Scenarios

The use cases above are worked out in sequence form in this section. The underlying network is assumed to be based on CAMEL3 or in other cases on CS2. CS2 is used for the cases where there are more than 2 parties in the call.

The behaviour inside the SCS is implementation spefic. However, as the underlying IN network only allows visibility on either the Originating BCSM (Basic Call State Model) or the Terminating BCSM, we assume that the Call object is responsible for coordination with the IN protocol and the call legs in the call.

[image: image1.wmf]gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

AppLeg1

AppLeg2

InitialDP(Analysed_Information)

"check if application interested"

state transition to "Progressing"

reportNotification(ADDRESS_ANALYSED)

"new"

"new"

"new"

"translate address"

createCallLeg

"new"

state transition to "Idle"

eventReportReq(ANSWER, RELEASE)

routeReq

state transition to"Analyse_Address"

"inform call object"

"continue call processing"

RRB(O_Answer, O_Disconnect, Route_Select_Failure, O_Busy, O_No_Answer, O_routing_and_alerting_failure)

CON

ERB(O_Answer)

state transition to "Active"

eventReportRes(ANSWER)

continueProcessing

CONTINUE

ERB(O_Disconnect)

state transition to "Released"

eventReportRes(RELEASE)

state transition to "Active"

continueProcessing

"inform call object"

"new"

"new"

"answer"

"inform leg"

"inform leg"

"inform call"

"continue call processing"

"disconnect from party"

"infrom leg"

The SCS is informed of the network event and creates a corresponding Call and Call Leg object. After this it informs the application. The application translates the address, requests the SCS to create a CallLeg corresponding to the B-party. Next, the application indicates it is interested in B answer event by invoking eventReportReq, and then request to route the call by means of invoking the routeReq operation on the new Call Leg. After this the application invokes continueProcessing on the incoming leg (leg 1).The SCS then informs the network that a call to the B-party has to be setup and call processing has to be resumed. In case the B-party answers the call, the SCS is informed and the SCS informs the application by calling eventReportRes on the corresponding AppCallLeg interface.

3.1 Destination address checking application.

[image: image2.wmf]AppLeg1

gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

InitialDP(Analysed_Information)

RRB(O_Answer, O_Disconnect, Route_Select_Failure, O_Busy, O_No_Answer, O_routing_and_alerting_failure)

CON

ERB(O_Answer)

CONTINUE

ERB(O_Disconnect)

state transition to "Progressing"

state transition to "Active"

"check if application interested"

reportNotification(ADDRESS_ANALYSED)

"new"

"new"

"translate address"

Address is ok, and

appl is not interested in

other party

eventReportReq(ANSWER, RELEASE)

continueProcessing

eventReportRes(RELEASE)

"new"

"new"

"inform call"

"continue call processing"

"answer"

"inform leg"

"continue call processing"

"disconnect"

"inform leg

eventReportRes(ANSWER)

Suppose in this

case the application

wants to be notified

and not have control

over the call.

state transition to "Released"

Either the calling party

disconnects or the called

party disconnects. In the

latter case the call is

released as the application

didn't arm for the disconnect

in interrupt and thus also the

calling party.

The sequence for this use case basically is the same as the sequence for the NT scenario. The only difference is that the application does not translate the destination number, but either continues processing when it is not interested in any view on the outgoing call leg or it just creates a new call leg with the destination number that was received in the initial triggering notification. In this sequence the application is not interested in any view on the outgoing leg and arms the events it is interested in on the incoming leg. When the network detects an answer event (in this case O_Answer), the call object is informed and this object informs all the corresponding legs. In this case there is only the incoming leg and this leg will inform the application.

3.2 NT leading to 3 party call

[image: image3.wmf]gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

AppLeg1

AppLeg2

InitialDP(Analysed_Information)

RRB(O_Answer, O_Disconnect, Route_Select_Failure, O_Busy, O_No_Answer, O_routing_and_alerting_failure)

CON

ERB(O_Answer)

CWA (CONTINUE)

ERB(O_Disconnect)

state transition to "Progressing"

state transition to "Active"

state transition to "Idle"

state transition to"Analyse_Address"

state transition to "Active"

state transition to "Released"

"new"

"inform call"

"check if application interested"

reportNotification(ADDRESS_ANALYSED)

"new"

"translate address"

createCallLeg

"new"

"new"

eventReportReq(ANSWER, RELEASE)

routeReq

eventReportRes(ANSWER)

eventReportRes(RELEASE)

AppLeg3

Leg3

createCallLeg

"new"

eventReportReq()

routeReq()

state transition to "Analyse_Address"

ICA

RRB

only for CS2

ERB(O_Answer)

MOVELEG

eventReportRes(ANSWER)

state transition to "Active"

"new"

"new"

continueProcessing

"inform call"

"continue call processing"

"answer"

"inform leg"

"inform leg"

"inform call"

continueProcessing

"inform call"

continueProcessing

"inform call"

"continue call processing"

"answer"

"inform leg"

"disconnect from party"

"inform leg"

The first part of this sequence is exactly the same as the NT sequence. When the B-party answers, the application sets up a connection towards a third party, exactly in the same way as it set up the connection towards the B-party.

3.3 Call barring

[image: image4.wmf]gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

AppLeg1

AppLeg2

InitialDP(Termination_Attempt_Authorized)

RRB(T_Answer, T_Disconnect, T_Busy, T_No_Answer)

CONTINUE

ERB(T_Answer)

CONTINUE

ERB(T_Disconnect)

state transition to "Processing"

state transition to "Active"

state transition to "Released"

"check if application interested"

reportNotification(CALL_ATTEMPT (Terminating))

"new"

"check originating address"

"new"

"new"

eventReportReq(ANSWER, RELEASE)

continueProcessing

eventReportRes(ANSWER)

continueProcessing

eventReportRes(RELEASE)

state transition to "Authorizing"

"continue call processing"

state transition to "Released"

"new"

"new"

"new"

"inform call"

"answer from party"

"inform leg"

state transition to "Active"

"inform leg"

"inform call"

"continue call processing"

"disconnect from party"

"inform leg"

"inform leg"

continueProcessing

"inform call"

This sequence starts when on the terminating half call (T-BSCM) an incoming call attempt is detected. The SCS is informed of this event (with InitialDP) and it creates a new call object as well as two call legs, one for the incoming party in the progressing state, the other one in the authorise state. Next the application is informed with reportNotification. The application then checks whether the originating party is allowed to make a call to the destination party by checking a list the destination party has created. In case the A-party is found in the list of allowed parties, the application indicates it is interested to be informed when the B-party answers and also when the B-party releases or the connection was not able to be established. After this the application continues the call processing by invoking continueProcessing on both the legs. The leg objects inform the call object in the SCS of these requests and the call object continues the call processing towards the SSF. When the B-party answers the SCS is informed and internally the call object will inform the corresponding legs of this event. In this case the second leg was armed by the application and will report the answer event to the application. Next the application continues the call processing by invoking continueProcessing on leg 2. etc...

3.4 Conference call

[image: image5.wmf]gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

AppLeg1

AppLeg2

AppLeg3

Leg3

CWA(CONTINUE)

ERB(O_Disconnect)

ICA

ERB(O_Answer)

MOVELEG

state transition to "Idle"

state transition to"Analyse_Address"

state transition to "Released"

"inform call"

createCallLeg

"new"

"new"

eventReportReq(ANSWER, RELEASE)

routeReq

eventReportRes(RELEASE)

eventReportReq()

routeReq()

state transition to "Analyse_Address"

eventReportRes(ANSWER)

state transition to "Active"

"new"

"new"

"new"

state transition to "Idle"

eventReportReq(ANSWER, RELEASE)

routeReq()

"inform call"

"continue call processing"

RRB

ICA

CWA(CONTINUE)

ERB (O_Answer)

eventReportRes(ANSWER)

createCallLeg

"continue call processing"

ICA

RRB

CWA(CONTINUE)

ERB (O_Answer)

eventReportRes(ANSWER)

state transition to "Active"

state transition to "Active"

"new"

createCallLeg

MOVELEG

"answer from party"

"inform leg"

continueProcessing

"inform call"

"answer from party"

"inform leg"

"inform call"

continueProcessing

"inform call"

"continue call processing"

"answer from party"

"inform leg"

"disconnect from party"

"inform leg"

This sequence shows how an application sets up a conference call between 3 parties. It starts by creation of the first call leg object on request of the application, followed by arming of the answer and release events and finally a routeReq operation. After this the first leg informs the call object and call processing is started towards the network. When the answer is detected, the SCS is informed and the application will be informed as well. The sequence then repeats by creation of a second call leg. Etc.

3.5 Call Forwarding

[image: image6.wmf]gsmSSF

SCS

Leg1

Leg2

Call

CCM

AppCCM

AppCall

AppLeg1

AppLeg2

InitialDP(T_Busy)

RRB(T_Answer, T_Disconnect, T_Busy, T_No_Answer)

ERB(T_Answer)

state transition to "Processing"

state transition to "Active"

state transition to "Released"

"continue call processing"

"new"

"new"

"answer from party"

"inform leg"

"check if application interested"

"new"

reportNotification(RELEASED)

"new"

"new"

"new"

deassign

createCallLeg

"inform call"

continueProcessing

"inform call"

CON

Leg3

"new"

"inform call"

"inform leg"

state transition to "Active"

eventReportRes(ANSWER)

AppLeg3

eventReportReq(ANSWER, RELEASE)

routeReq

This sequence shows how call forwarding is achieved. It starts when on behalf of the terminating party it is detected that this party is busy. The SCS is informed and creates the incoming leg in state progressing and the second leg in state released and reports the event to the application. The application then requests the SCS to create another leg that will represent the C-party, arms the necessary events and requests to route the leg. The leg representing the B-party is no longer needed and the application deassigns this object. Next the application continues processing of leg1 which leads to continuation of call processing in the network. Etc.

