3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, CA, USA, 21 – 24 May 2001
Tdoc N5-010365

Source:
Lucent :

Andy Bennett (andybennett@lucent.com),

Gareth Carroll (garethcarroll@bell-labs.com) &

Tip Apaseesod (ta39@lucent.com)

Title:
Replacement of disable/enableLoadControl
Agenda Item:

Document for:
Approval
Category:
TS
Work Item ID:

Doc Summary:
Proposed to replace disableLoadControl() and enableLoadControl() with a single method called loadLevelNotification()
Specs involved:
DTS/SPAN-120070-5
Proposal

The IpAppLoadManager’s disableLoadControl() method is invoked to indicate that the load level on a Service has returned to 0.

The enableLoadControl() method is invoked when the load level of a Service has change to a value of 1 or 2.

We propose that for clarity of purpose (since it is presumptive to assume that load control will actually be enabled or disabled) the method names should at least be changed but in this contribution go further to suggest that only one method is required. This method is invoked to indicate a change of load level, regardless of what value it has changed to.

Resultant Changes

The effect of this proposal is to change four interfaces, along with the associated documentation. The two interface pairs are IpLoadManager/IpAppLoadManager and IpFwLoadManager/IpSvcLoadManager. The sequence diagram 6.2.5 and the State Transition Diagram in 9.3.3 are also changed, whilst the LoadManagerInternal diagram in 9.3.4 is to be removed. The FW->SVC side version of 6.2.5 should be added, along with a FW->SVC side of 9.3.3.

Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

disableLoadControl (serviceIDs : in TpServiceIDList) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

loadLevelNotification(loadStatistics : in TpLoadStatisticList) : TpResult
resumeNotification () : TpResult

suspendNotification () : TpResult

Method

queryAppLoadReq()

The framework uses this method to request the application to provide load statistic records for the application and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the application and/or the services for which load statistic records should be reported. The application is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpGeneralException,TpFWException
Method

queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpGeneralException,TpFWException
Method

disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to normal, framework disables load control activity at the application based on policy.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or services for which the load level has returned to normal. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1, for the SCFs or framework which has been registered for load control), the framework enables load management activity at the application based on the policy.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException

Method

resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : TpResult

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

registerLoadController createLoadLevelNotification(serviceIDs : in TpServiceIDList) : TpResult

unregisterLoadController destroyLoadLevelNotification(serviceIDs : in TpServiceIDList) : TpResult

resumeNotification (serviceIDs : in TpServiceIDList) : TpResult

suspendNotification (serviceIDs : in TpServiceIDList) : TpResult

Method

reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpGeneralException,TpFWException
Method

queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework and/or for individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load statistic records should be reported. The framework is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpGeneralException,TpFWException
Method

queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpGeneralException,TpFWException
Method

RegisterLoadControllercreateLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and SCFs to be registered for load control. To register for framework load control only, the serviceIDs is null.
Raises

TpGeneralException,TpFWException
Method

unregisterLoadControllerdestroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with the framework and/or with individual services used by the application.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications of load level changes by the framework should be resumed. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with the framework and/or with individual services used by the application; e.g. while the application handles a temporary overload condition.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework and/or the services for which the sending of notifications by the framework should be suspended. The framework is designated by a null value
Raises

TpGeneralException,TpFWException

Interface Class IpSvcLoadManager

Inherits from: IpInterface.
<<Interface>>

IpSvcLoadManager

querySvcLoadReq (timeInterval : in TpTimeInterval) : TpResult

queryLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : TpResult

enableLoadControl (loadStatistics : in TpLoadStatisticList) : TpResult

disableLoadControl (appIDs : in TpClientAppIDList) : TpResult

loadLevelNotification(loadStatistics: in TpLoadStatisticLIst) : TpResult

suspendNotification () : TpResult

resumeNotification () : TpResult

Method

querySvcLoadReq()

The framework uses this method to request the service to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

queryLoadRes()

The framework uses this method to send load statistic records back to the service that requested the information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics
Raises

TpGeneralException,TpFWException
Method

queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpGeneralException,TpFWException
Method

enableLoadControl()

The framework uses this method to notify the service of any load level change in the framework or in applications that use the service, other than a return of the load to a normal level. The service must have previously registered to receive such notifications (reference the registerLoadController method of the IpFwLoadManager interface) and must not have requested the framework to temporarily suspend such notifications (reference the suspendNotification method of the IpFwLoadManager interface).

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException
Method

disableLoadControl()

The framework uses this method to notify the service of the end of an overload condition in the framework or in applications that use the service. The service must have previously registered to receive such notifications (reference the registerLoadController method of the IpFwLoadManager interface) and must not have requested the framework to temporarily suspend such notifications (reference the suspendNotification method of the IpFwLoadManager interface).

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or applications for which the load level has returned to normal. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the applications or framework which have been registered for load level notifications) this method is invoked on the SCF.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpGeneralException,TpFWException

Method

suspendNotification()

The framework uses this method to request the service to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The framework uses this method to request the service to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.

Parameters

No Parameters were identified for this method

Raises

TpGeneralException,TpFWException

Interface Class IpFwLoadManager

Inherits from: IpInterface.
<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : TpResult

queryLoadReq (appIDs : in TpClientAppIDList, timeInterval : in TpTimeInterval) : TpResult

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : TpResult

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : TpResult

registerLoadController createLoadLevelNotification(appIDs : in TpClientAppIDList) : TpResult

unregisterLoadController destroyLoadLevelNotification(appIDs : in TpClientAppIDList) : TpResult

suspendNotification (appIDs : in TpClientAppIDList) : TpResult

resumeNotification (appIDs : in TpClientAppIDList) : TpResult

Method

reportLoad()

The Service uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load level on the service has changed.

At level 0 load, the service is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service is overloaded. At level 2 load, the service is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service's load level.
Raises

TpGeneralException,TpFWException
Method

queryLoadReq()

The service uses this method to request the framework to provide load statistic records for the framework and/or for individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the load statistics should be reported. The framework is designated by a null value.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpGeneralException,TpFWException
Method

querySvcLoadRes()

The service uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpGeneralException,TpFWException
Method

querySvcLoadErr()

The service uses this method to return an error response to the framework that requested the service's load statistics information, when the service is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service's load statistics.
Raises

TpGeneralException,TpFWException
Method

registerLoadControllercreateLoadLevelNotification()

The service uses this method to register to receive notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

UnregisterLoadControllerdestroyLoadLevelNotification()

The service uses this method to unregister for notifications of load level changes associated with the framework and/or with individual applications that use the service.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which load level changes should no longer be reported. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

suspendNotification()

The service uses this method to request the framework to suspend sending it notifications associated with the framework and/or with individual applications that use the service; e.g. while the service handles a temporary overload condition.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the sending of notifications by the framework should be suspended. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException
Method

resumeNotification()

The service uses this method to request the framework to resume sending it notifications associated with the framework and/or with individual applications that use the service; e.g. after a period of suspension during which the service handled a temporary overload condition.

Parameters

appIDs : in TpClientAppIDList

Specifies the framework and/or the applications for which the sending of notifications of load level changes by the framework should be resumed. The framework is designated by a null value.
Raises

TpGeneralException,TpFWException

6.2.5 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function based on policy.

[image: image1.wmf] :

IpAppLoadManager

 :

IpLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

3:

loadLevelNotification

()

2: load change detection & policy evaluation

This is the

implementation detail

5:

loadLevelNotification

()

6:

destroyLoadLevelNotification

()

4: load change detection & policy evaluation

This is the

implementation detail

Figure 1
9.3.3 State Transition Diagram for IpLoadManager

[image: image2.wmf]Idle

NOTIFICATION

SUSPENDED

ACTIVE

IpAccess.obtainInterface

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by

LoadManager]

queryAppLoadErr[load statistics requested by

LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

IpAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpAccess.endAccess

queryLoadReq

“

load

change”^loadLevelNotification

Figure 2
IDLE

In this state the application has obtained an interface reference to the IpLoadManager from the IpAccess interface.

ACTIVE

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager. The load manager can now request the application to supply load statistics information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
NOTIFICATION SUSPENDED

Due to, e.g. a temporary load condition, the application has requested the load manager to suspend sending the load level notification information.

9.3.4 State Transition Diagrams for IpLoadManagerInternal

This section is to be removed.

Add XXX Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function based on policy.

[image: image3.wmf] :

IpSvcLoadManager

 :

IpFwLoadManager

1:

createLoadLevelNotification

()

Framework detects its

load condition change

and initiates load control

action

3:

loadLevelNotification

()

2: load change detection & policy evaluation

This is the

implementation detail

5:

loadLevelNotification

()

6:

destroyLoadLevelNotification

()

4: load change detection & policy evaluation

This is the

implementation detail

Figure 3
Add XXX State Transition Diagram for IpFwLoadManager

[image: image4.wmf]Idle

NOTIFICATION

SUSPENDED

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by

LoadManager]

querySvcLoadErr[load statistics requested by

LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

IpFwAccess.obtainInterfaceWithCallba

ck

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

queryLoadReq

“

load

change”^loadLevelNotification

Figure 4
IDLE

In this state the service has obtained an interface reference to the IpFwLoadManager from the IpFwAccess interface.

ACTIVE

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
NOTIFICATION SUSPENDED

Due to, e.g. a temporary load condition, the service has requested the load manager to suspend sending the load level notification information.

Figure 5

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

_1049874996.doc

 : IpAppLoadManager

 : IpLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

3: loadLevelNotification()

2: load change detection & policy evaluation

This is the

implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

4: load change detection & policy evaluation

This is the

implementation detail

_1050241342.doc

 : IpSvcLoadManager

 : IpFwLoadManager

1: createLoadLevelNotification()

Framework detects its

load condition change

and initiates load control

action

3: loadLevelNotification()

2: load change detection & policy evaluation

This is the

implementation detail

5: loadLevelNotification()

6: destroyLoadLevelNotification()

4: load change detection & policy evaluation

This is the

implementation detail

_1050241625.doc

Idle

NOTIFICATION

SUSPENDED

“load change”^loadLevelNotification

ACTIVE

IpFwAccess.obtainInterface

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

reportLoad

querySvcLoadRes[load statistics requested by LoadManager]

querySvcLoadErr[load statistics requested by LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

queryLoadReq

IpFwAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpFwAccess.endAccess

_1049873435.doc

Idle

NOTIFICATION

SUSPENDED

“load change”^loadLevelNotification

ACTIVE

IpAccess.obtainInterface

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

reportLoad

queryAppLoadRes[load statistics requested by LoadManager]

queryAppLoadErr[load statistics requested by LoadManager]

queryLoadReq

destroyLoadLevelNotification

suspendNotification[all notifications suspended]

createLoadLevelNotification

queryLoadReq

IpAccess.obtainInterfaceWithCallback

resumeNotification

destroyLoadLevelNotification

All States

IpAccess.endAccess

