	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, USA, 20-24 May 2001
	Tdoc N5-010361

Source:

Title:
Scenario’s supporting Telcordia STD
Agenda Item:

Document for:
Discussion
Call Leg STD

[image: image1.jpg]Ps oreatecallLe

lincoming oall signal

reportuotificstion(s_oau

Trestemnmmtec LLeg,

“reportiotification(p_CALL LG AVTHOREZE) ([FuwoRzan

soutared, "oall leg
abjeo] orested”

“reminsting call Le

transition

“sbout to colllect digits”

“reportiotification(p_CALL LEG_AALYZE)

“reportuotification(p_caiL Lee corueer) (RBDRESS_ | FewerepisledbigiteReq
corvzert i,
advacs

SetTacgetnddress, "digits collested into targdt address”

~ceporthotification(p_caLL LEG_cALL DRLIVERY)

Buammamss

target address analy:

“tacget.

“reportiotification(p_CALL LEG_comecTen) [GamiEe

L vaTia states swoet
‘DISCONECTED and FATLED

tear
release, "disso

originating call
beeportotitiostion(p_caLL_Lee_neszne T Leg transition’,
comeote

AL v
Statas

sign

The previous call leg state transition diagram is explained in another contribution.

Use Cases

Number translation + Connected monitoring use case

The use case begins when the SCS is informed that a party is interested in placing a call. The party has entered a specific number that has been analysed by the network (e.g. switch). The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event and in turn the application translates the address the party entered to another number and informs the SCS it is interested to be informed when the connection is successfully setup.

Destination address checking + Connected monitoring use case

This is a variation on the Simple Number translation use case. In this case, however, the number is not translated but the application just checks the destination address.

NT leading to 3 party call + Connected monitoring use case

This use case is also a variation to the Number translation use case. However, after a two party call is established, the application creates a new call leg and requests to route it to its destination address in order to establish a 3 party call.

Call Barring use case

This use case begins when the SCS is informed that a call is about to be placed towards the terminating party. The call processing is suspended and the SCS is granted control over the call. The SCS informs the application of the event. The application checks that the party originating the call is allowed to call the destination party. Next, the application tells the SCS to continue the call.

Third party call setup + Connected monitoring use case

This use case begins when the application initiates a 3 party call. First the application requests the SCS to create the first call leg. Next it tells the application it is interested in whether the connection is setup successfully. Then the application requests to route the call leg to the destination address. In case the party answers, the application is informed and the application requests the SCS to create the second Call Leg. The procedure is repeated until there are 3 parties in the call.

Call forwarding + Connected monitoring use case

This use case begins when a call is made from A to B but the B-party is detected to be busy. The application is informed of this and sets up a connection towards a C party. The C party can for instance be a voicemail system.

Scenarios

The use cases above are worked out in sequence form in this section. The underlying network is assumed to be based on CAMEL3 or in other cases on CS-2. CS-2 is used for the cases where there are more than 2 parties in the call.

In order to get the dynamic triggering working for the setTargetAddress approach, a change had to be made to the Call object interface: it is proposed to add dynamic event registration and manipulation support to the call object and appl. call object: the eventReportReq/Res/Err methods (a separate contribution will introduce this addition). These scenarios show that adding these methods to a ‘central’ object is more efficient.

Other ways to achieve the same behavior are adding a method to ApplManager that is invoked on creation of a new call leg (an earlier Alcatel contribution proposed this) or through making use of static events in a more dynamic way.

The attached scenario can be compared with the Ericsson scenario in Section 4. Note that the Ericsson scenario also interrupts call processing for the ‘DISCONNECTED’ event. The following call flows show how an application is notified from the ‘CONNECTED’ event only

Number translation + Connected monitoring use case

[image: image2.jpg]2ppLogic| [2ppLeqz | [2ppLegt || 2ppcall | appcey ccm call Leql LeaZ sCs gsmssE

InitialDP(&nalysed_Information)

£ application intérested" J

I

T news

"state td CL DELIVERY"

inewt

9
2
3
g
1
s
g
8
5
o
7
&
)
e
El
E
&
a
5
=1
8

vbtate to ADDRESS AMALTSEY

“target] address prmed?"

rmeukparty 5, [ewe, wbr1FIcATIGN) "
"create the physical call lég to B party, while requesting notiffication 2} ANSWER"

ERTING_FAILURE))

("B Party")

U

EHB(O_ANSWER)

-

[JconTinue |

sotate fo comeclfor

; | eventRepbrtRes (CONNECTED)

Destination address checking + Connected monitoring use case

[image: image3.jpg]2ppLogic| appLeql | AppLeqZ [AppCall | AppCCM ccm call Leql LeaZ sCs gsmssE

InitialDP(analysed_Information

e

H”state CL DELIVERY"

=

reportiot ifjicat ion(CL_DELIVERY)

“forward event"

e

—

4 EventReportReq(Partly B, ANSWER,NOTIFY)

cont inueProcessing

"target! address Armed?"

U

"new(Party B, ANSWER,NDTIFICATION)

“oreatd phys. call leg”

"continud call processing”

r—]

T e !
1

("B Party")

col

=

'CONTINUE
o

eventReportRes (CONNECTED

NT leading to 3 party call + Connected monitoring use case

[image: image4.jpg]2ppLogic| [2ppLeg3 | 2ppLeqz | 2pplegl | 2ppcall | appcc

2
8
=3
o
5

‘:
&

‘:
&

Legd sCs gsmssE

InitialDP(apalysed_Information)

reportloti

"CL DELIVERY ocdured”

¥ "néw

eventReportRes (CONNECTED, "B party", NOTIFICATION)

setTargetaddress ("B party")

“target address|
I

"new(party BJANSWER,NOTIFICATION)"

create phys. leg”

neon. call proc.”

—
ERB(

I

ca !

CWA(CONTINUE)

con({p party")i

ERB{0O_ANSWER

[movELEG |J

“ANSWER"

“state to CANNECTED" HCONTINUE

=

eventReportRés (CONNECTED)

“forward; event"

et

evdntReportRes ("¢ party", CONNECTED, NOTIFICATION)

createandRourecCallleg"C partyl)

“new(party C;ANSWER,NGTIFICATIGN)"

(¢ party")

ERBI("O_ANSWER")

" ANSWER"

=

NECTED" [commus

rtRes (CONNECTED)

"forward evemt"

Call Barring use case

This example is almost the same as the one outlined in the Ericsson scenario. It checks whether an outgoing call leg is allowed. The I-Call Leg is not created. If the o-call leg is authorized continueProcessing is called. The application will not monitor for CONNECTED or DISCONNECTED.

[image: image5.jpg]2ppLogic| appLeq? | AppCall | appccn ccm call LeaZ sCs gsmssE

; 3 ; : : ; Initialpp(Terminating_Attempt_Authorized

s interefted”

ined

TUstate to AUTHORIZING'

Voont inue

CONTINUE

Third party call setup + Connected monitoring use case

[image: image6.jpg]2ppLogic| 2ppLeqd | AppLeaZ | 2ppLegl | AppCall | AppCCM

‘0
8
=3
o
5
‘:
&
‘:
&
‘:
&

gsmssE

neu”

Thewl

T swees

createAndRputeCallleg(Party A)

“forvard event”

—
call leg”
ca
/A (CONTINU
;Jl‘ O_ANSWER)
" ANSWER" :
o comnct
"state fo CONNECTED"
TCONTINUE
f:. i
eventReportRes (CONNECTED) €
cheateandRbuteCallLég(Party B)
ndit

© CONNECTED" T MOVELEG
=

"state [

[

0

eventRepiortRes (CONNECTED)

createandRouteCalllég(Party ¢)

MOVELEG

)

=

reportEdentRes (CANNECTED)

"forward erm

0

Call forwarding + Connected monitoring use case

[image: image7.jpg]o3
8
=3
o
&

2ppLogic|| 2ppLeqs | 2ppLeqz | 2ppcall | appccn LeaZ Legd sCs gsmssE

InitialDP(T_Busy)

I

e

e

bstate tg DISCONNECTED"
comuEL) [:. i

reportNotifjcation(D:

“forvard event | g

ndy

"creatéiphys. call leg”

BUSY,T NO ANSWER)
con

i continueProcessing

calilLegReleabed

|CONTINUE

"sta

| "ANSWER"|

“state |4o CONNECTED"

