Page 1
Draft prETS 300 ???: Month YYYY

Page 4

Temporary document N5-010Cont6EventMonitor
Joint 3GPP TSG_CN5/ ETSI SPAN 12/Parlay
21-24 MAy 2001
San Diego, USA

Source:
Alcatel

Title:
Event monitor refinements

Date:
21 May 2001

Document for:
API for Open Service Access.
Agenda item:

1 Introduction

Currently event monitoring is done on a call leg without taking into account the event direction. This means that an application currently can only monitor the local events. This contribution propose to refine the event monitoring so that the event origin is taken into account. Some signalling indications such as “Alerting” and “Answer” can only be detected in one direction (from destination to originating) other signalling such as “Release” and “Event_Report” can be detected in both directions. It is proposed that a origin indicator is added to the event request and event response parameters.

2 Event monitoring principles.

UUse

In the picture below the multiparty call control object for a 2 party call are depicted.

[image: image2.emf]AppLeg1 gsmSSF SCS Leg1 Leg2 Call CCM AppCCM AppCall

InitialDP(Analysed_Information)

RRB(O_Answer, O_Disconnect, Route_Select_Failure, O_Busy, O_No_Answer, O_routing_and_alerting_failure)

CON

ERB(O_Answer)

CONTINUE

ERB(O_Disconnect)

state transition to "Progressing"

state transition to "Active"

"check if application interested"

reportNotification(ADDRESS_ANALYSED)

"new"

"new"

"translate address"

Address is ok, and

appl is not interested in

other party

eventReportReq(ANSWER, RELEASE)

continueProcessing

eventReportRes(RELEASE)

"new"

"new"

"inform call"

"continue call processing"

"answer"

"inform leg"

"continue call processing"

"disconnect"

"inform leg

eventReportRes(ANSWER)

Suppose in this

case the application

wants to be notified

and not have control

over the call.

state transition to "Released"

Either the calling party

disconnects or the called

party disconnects. In the

latter case the call is

released as the application

didn't arm for the disconnect

in interrupt and thus also the

calling party.

In the above figure two events are considered. A first event, called ‘event 1’, which propagates from Leg 1 towards Leg 2. A second event, called ‘event 2’ which propagates from Leg 2 to Leg 1.

If a application wants to detect those events then it has to request event reporting. Looking to drawing, one could theoretically assume that the event can be detected on both legs. However, with the current definition ‘event 1’ can only be requested on Leg 1, while ‘event 2’ can only be requested at Leg 2.

This contribution proposes to enhance the event monitoring so that events can be requested on both legs. To do this we would like to introduce the ‘event origin’. The ‘event origin’ we would define as the origin (originating or destination) of the event from the leg point of view. The terms originating and destination are also used in the TpCallNotificationReportScope as address parameters that specify the scope for which a notification report was sent; namely DestinationAddress and OriginatingAddress.

In this case ‘event 1’ is considered as an originating event for Leg 1 and for Leg 2, while ‘event 2’ is seen as a destination event for Leg 2 and for Leg 1.

3 Example scenario.

UUse

In the picture below an example is given of the usage of the event origin. In the example a screening and monitoring application is considered. In case the network has analysed the address the application is notified and will perform a screening to see if the call is allowed. In case the call is allowed the application invokes a continueProcessing and request event reporting to further monitor the call.

[image: image1.wmf]Call_1

Leg_1

Leg_2

Event 1

Event 1

Event 2

Event 2

Event 1

Event 2

If only one instance of a call leg is armed for reporting the release (disconnect) events then the direction will indicate in a two party call whether the disconnect is generated from the A or B party (respectively originating and destination party).

4 API impact.

UUse

This chapter contains the proposed changes on the API, to support the in previous chapter described mechanism.

4.1

Event report request

 Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

 callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventReportsRequested : in TpCallEventReportRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException

4.2

Event report result

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-called disarming rules are captured in the data definition of the event type.

Parameters

 callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventOrigin

: in TpCallEventOrigin

Specifies the origin (originating or destination) of the reported event

 eventInfo : in TpCallEventInfo

Specifies data associated with this event.
Raises

 TpGeneralException,TpGCCSException
4.3

Data Types

TpCallEventOrigin

Defines the origin of an call event.

Name
Value
Description

P_EVENT_ORIGIN_ORIGINATING
0
Indicates an orignating event origin. So the event is coming from the party identified by the originating address.

P_EVENT_ORIGIN_DESTINATION
1
Indicates a destination event origin.So the event is coming from the party identified by the destination party.

TpCallEventReportRequestSet

Defines a numbered set of Data Elements of TpCallEventReportRequest.

TpCallEventReportRequest

Defines the Sequence of Data Elements that specify the criteria related to event report requests.

Sequence Element Name
Sequence Element Type
Description

CallEventReportScope
TpCallEventReportScope
Defines the scope of the event report request.

CallEventsRequested
TpCallEventRequestSet
Defines the events which are requested

TpCallEventReportScope

Defines a the sequence of Data elements that specify the scope of an event report request.

Sequence Element Name
Sequence Element Type
Description

CallEventOrigin
TpCallEventOrigin
Defines the origin of an call event.

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�M:Class:Rose:CClass:SubPackages:Rose:CPackage:N=Classes:==A:Rose:CClass::Stereotype:SInterface

�Rose:CClass:MDLFilename=D\x3A\x5CparlayLatestModel\x5CUML_ETSI_OSA.mdl,ClassID=3A5C65860126

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�M:Class:Rose:CClass:SubPackages:Rose:CPackage:N=Classes:==A:Rose:CClass::Stereotype:SInterface

�Rose:CClass:MDLFilename=D\x3A\x5CparlayLatestModel\x5CUML_ETSI_OSA.mdl,ClassID=3A5C65860126

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�F:SubPackages:Rose:CPackage::Documentation:SAAA:

�M:Class:Rose:CClass:SubPackages:Rose:CPackage:N=Classes:==A:Rose:CClass::Stereotype:SInterface

�Rose:CClass:MDLFilename=D\x3A\x5CparlayLatestModel\x5CUML_ETSI_OSA.mdl,ClassID=3A5C65860126

* Contact:
Dirk De Gelder

Frans Haerens
(+32-3-240.42.12 / * dirk.de_gelder@alcatel.be
(+32-3-240.90.34 / * frans.haerens@alcatel.be

contr6eventMonitoring.doc

_1044934259.doc

Call_1

Leg_1

Leg_2

Event 1

Event 1

Event 2

Event 2

Event 1

Event 2

1/1

