3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #11, San Diego, CA, USA 21-24 May 2001
Tdoc N5-010308

Source:
Ericsson

Title:
Tables with allowed methods for the STDs
Agenda Item:

Document for:
Approval
Category:
Report
Work Item ID:
OSA
Doc Summary:

Specs involved:

Introduction

During the last ad-hoc meeting we concluded that it would be useful to have an overview of which methods are allowed in which states. Usually this kind of information is found in so-called action tables where one shows the initial state, method and final state. However, we think methods that explicitly lead to state transitions are better explicitly shown in the STD and in addition a table that shows which methods are allowed per state should be created.

4.1 This is outlined in the rest of the contribution, where we also used the latest STDs resulting from the last ad-hoc meeting.
4.1.1 Multi-Party Call Control Service State Transition Diagrams

4.1.2 State Transition Diagrams for IpMultiPartyCallControlManager 

[image: image1.png]IN_SERV
IcE

OUT_OF_
SERVICE

*manager Ingervice

Ipaccdss. terminateServicel

“Terminateserviceagreement

»IpAppaccess . signServiceagreament



 

4.1.2.1 Figure : Application view and the MPCC Manager 

4.1.2.2 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object, depending on the specific event create 1 or 2 call Leg objects and inform the application. 
4.1.2.3 The application can also indicate it is no longer interested in certain call related events by calling destroyNotification()..
4.1.2.4 Notification terminated State

When the Manager is in the Notification terminated state, events requested will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications from the network than defined in the Service Level Agreement. Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

7.4.1.3 Overview of allowed methods
State
methods applicable

In_Service
createCall,

createNotification,

destroyNotification,

changeNotification,

getNotification,

setCallLoadControl

Out_Of_Service
destroyNotification,

getNotification

4.1.3 
4.1.4 State Transition Diagrams for IpMultiPartyCall 

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call. 

[image: image2.png]@ [pMultiPartyCallianager. createCall 1oLz |

ing call"

createCalliéy

eCallLeg

ACTIVE "timer xpires"

detected"

RELEASED

FAULTY |

ZultDetected

deassign




 

4.1.4.1 Figure : Application view on the MultiParty Call object 

4.1.4.2 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.
4.1.4.3 The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
4.1.4.4 Network Released State

4.1.4.5 In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.
4.1.4.6 No Parties State

4.1.4.7 In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
4.1.4.8 Application Released State

4.1.4.9 In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
4.1.4.10 Finished State

4.1.4.11 In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
4.1.4.12 2 .. n Parties in Call State

In this state a successful connection between at least two parties is established.
4.1.4.13 In this state user interaction is possible, depending on the underlying network.
4.1.4.14 1 Party in Call State

In this state there is one party in the call. 
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation createAndRouteCallLegReq(). 
In case the called party was reached by issuing a routing request, the application can request a connection to an additional party by calling the operation createAndRouteCallLegReq() again. 
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still setup a connection to another called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, either the call is ended or a transition is made back to the Routing to Destinations substate or the No Parties state, depending on whether there are outstanding routing requests.
4.1.4.15 In this state user interaction is possible.
4.1.4.16 Routing to Destination(s) State

In this state there is at least one outstanding routing request.

7.4.2.9 Overview of allowed methods

State
methods applicable

Idle
getCallLegs,

createCallLegs,

createAndRouteCallLegReq,

deassignCall,

getInfoReq,

setChargePlan,

setAdviceOfCharge,

superviseReq

Active
getCallLegs,

createCallLegs,

createAndRouteCallLegReq,

deassignCall,

getInfoReq,

setChargePlan,

setAdviceOfCharge,

superviseReq

Faulty
-

Released
deassignCall

4.1.5 State Transition Diagrams for IpCallLeg 

4.1.5.1 Figure : Application view on the CallLeg object 

4.1.5.2 Idle State

4.1.5.3 In this state a new CallLeg object has been created and the application has not yet issued a routing request.
4.1.5.4 Routing State

4.1.5.5 In this state a connection to the call party is being established.
4.1.5.6 Connected State

In this state a connection to the call party is established. 
In case the request for the connection was made by createAndRouteCallLeg on the Call object, the call party is also attached to the Call.
4.1.5.7 In case the request was made by route() the call party still needs to be attached to the Call.
4.1.5.8 Failed or Disconnected State

In this state no connection to the call party could be established or the call party has disconnected.
4.1.5.9 The reason that no connection could be established can be that an invalid address was specified, the network aborted routing or the call party was busy.
4.1.5.10 Incoming State

4.1.5.11 This state is only valid for an incoming Call Leg in case and there is no call established to another party.
4.1.5.12 Progress State

4.1.5.13 In this sub-state the network has indicated there is progress in routing the CallLeg.
4.1.5.14 Alerting State

4.1.5.15 In this sub-state the network has indicated there the terminal of the party is alerting.
4.1.5.16 Redirected State

4.1.5.17 In this sub-state the network has indicated the call party has redirected calls to another address.
4.1.5.18 Attached State

4.1.5.19 In this sub-state the media of the Call Leg object is attached to a Call object. 
4.1.5.20 Detached State

In this sub-state the media of the Call Leg object is not attached to a Call object. 
7.4.3.11 Overview of allowed methods

State
methods applicable

Idle
routeReq,

eventReportReq,

release,

getInfoReq,

getCall,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Collect_Address
eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Analyse_Address
eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

getMoreDialledDigitsReq,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Progressing
eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Alerting
eventReportReq,

release,

getInfoReq,

getCall,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Active
eventReportReq,

release,

getInfoReq,

getCall,

attachMedia,

detachMedia,

getLastRedirectedAddress,

continueProcessing,

setChargePlan,

setAdviceOfCharge,

superviseReq,

deassign,

Released
getCall,

deassign,

Faulty
deassign

� Contact information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, tel: +31 161242777, e-mail: �HYPERLINK "mailto:Ard.Jan.Moerdijk@eln.ericsson.se"��Ard.Jan.Moerdijk@eln.ericsson.se�, 





